Принцип работы счетчика Гейгера

Регистрация ионизирующих излучений приборами основана на преобразовании излучений детектором и измерительной схемой в электрические сигналы, принятые в практике измерений.

Приборы для измерения ионизирующих излучений могут регистрировать различные физические величины. Наиболее интересны следующие из них: поглощенная, экспозиционная и эквивалентная дозы и их мощность, плотность потока частиц, флюенс частиц, объемная, массовая, поверхностная, эффективная активности.

Любой прибор, измеряющий ионизирующие излучения, содержит детектор, измерительную схему (регистратор или анализатор) и вспомогательные элементы.

Детектор преобразует информацию о параметрах излучений в энергию электрического сигнала. По преобразованию энергии излучения в другие виды энергии детекторы можно разделить на следующие группы:

• ионизационные (газовые счетчики, ионизационные камеры, полупроводниковые счетчики);

• сцинтилляционные;

• фотографические;

• химические.

Измерительная схема выделяет, преобразует, накапливает, хранит и выдает информацию в виде электрических сигналов, удобных для наблюдения, записи, вычисления или управления другими приборами. Вспомогательные элементы обеспечивают заданные режимы работы детектора и измерительной схемы. К ним относятся источники питания, блоки программирования режима работы, контроля исправности и градуировки, регистрирующие устройства (цифропечатающие устройства, самописцы, осциллографы, счетчики импульсов и т.д.).

Функциональные схемы приборов в значительной мере определяются формой сигналов, поступающих от детекторов излучений и с выхода измерительной схемы (в виде импульсов – дискретная форма информации или в виде медленно меняющегося тока (напряжения) – аналоговая форма информации).

Приборы с дискретной формой входной и выходной информации могут включать в себя усилители, стандартизаторы и дискриминаторы импульсов, счетные и анализирующие схемы с суммированием и памятью двоичным, десятичным и другими способами счисления.

Импульсы, несущие информацию о параметрах излучения, могут отличаться по амплитуде, форме и времени появления. Разделением этих импульсов но их параметрам с помощью анализирующих устройств удается измерять не только плотность потока излучения по средней скорости следования импульсов, но и энергию, вид и пространственное распределение излучения.

Анализирующие устройства обычно работают в двух режимах обработки информации. В первом случае анализатором отбираются импульсы с заданными параметрами, во втором – сигналы отбираются по группам в зависимости от заданных параметров отбора.

В приборах с аналоговым видом входной и выходной информации применяются электрометрические и выходные усилители постоянного тока. В схемах с предварительным преобразованием постоянного тока в переменный используются преобразователи и усилители переменного тока.

Для перекрытия необходимого диапазона измерений с заданной точностью в устройствах с аналоговым видом выходной информации применяются показывающие и самопишущие приборы с линейной и нелинейной шкалами (логарифмической, линейно-логарифмической и т.д.), а также цифровые вольтметры с цифропечатающими устройствами.

Информация на выходе приборов может быть как дискретной, так и аналоговой независимо от формы информации на входе.

Аналоговая информация, поступающая от токовых детекторов излучений (ионизационные камеры), в ряде приборов преобразуется в дискретную путем дозирования – квантования зарядов.

Значительное число приборов с дискретной информацией на входе имеют аналоговую выходную информацию; к ним относятся радиометры, рентгенометры, интенсиметры с измерителями средней скорости следования импульсов.

Результаты измерений могут представляться в виде сигналов, наблюдаемых визуально (показания стрелочных приборов, на экране осциллографа или компьютера и т.д.); зафиксированных регистрирующим устройством (счетчиком импульсов, самописцем, цифропtчатающим устройством и т.д.). Сигналы могут быть звуковыми, генерируемыми телефонами, звонками, сиренами и т.д., подаваться для управления другими приборами.

Любой вид излучения при взаимодействии с веществом приводит к появлению ионизации и возбуждения. Заряженные частицы вызывают эти процессы непосредственно, при поглощении g-квантов ионизацию создают быстрые электроны, возникающие в результате фотоэффекта, эффекта Комптона или при рождении пар, а в случае нейтронов ионизация создается быстролетящими ядрами. При этом одна первичная частица может привести к появлению сотен тысяч ионов, благодаря чему сопровождающие ионизацию вторичные эффекты (электрический ток, вспышка света, потемнение фотопластинки и др.) могут быть замечены человеком непосредственно с помощью его органов чувств; иногда эти эффекты остается лишь усилить в нужное число раз. Таким образом, ионизация является как бы своеобразным усилителем явлений взаимодействия ионизирующего излучения с веществом. Поэтому работа всех регистрирующих приборов так или иначе связана с использованием ионизации и возбуждения атомов вещества.

Электроны, образующиеся при различных видах взаимодействий, тормозятся в среде, затрачивая свою энергию на ионизацию и возбуждение атомов. Образовавшиеся ионы и свободные электроны быстро рекомбинируют, так что заряд через очень короткое время (10-5 с для газов) исчезает. Этого не происходит, если в среде создать электрическое поле. В этом случае носители заряда будут дрейфовать вдоль поля, положительные в одну сторону, отрицательные – в другую. Движение зарядов является электрическим током, измерив который, можно определить величину заряда.

Именно так действует ионизационная камера. Она представляет из себя герметичный объем, наполненный газом, в котором расположены два металлических электрода (рис. 7.1). К электродам приложено электрическое напряжение. При прохождении электрона, образовавшегося при взаимодействии γ-кванта с веществом, свободные заряды – ионы и электроны – дрейфуют к электродам, и в цепи возникает импульс тока, пропорциональный заряду, образованному электроном.

Рис. 7.1. Принцип действия ионизационной камеры

К сожалению, импульсы тока от электронов, образованных частицами малых энергий и γ-квантами, очень малы. Их трудно точно измерить, поэтому ионизационные камеры используются для регистрации тяжелых частиц, например, α-частиц, которые образуют при прохождении через ионизационную камеру значительно бо́льшие импульсы тока.

Если повысить напряжение на электродах ионизационной камеры, то возникает явление, названное газовым усилением. Свободные электроны, двигаясь в электрическом поле, приобретают энергию, достаточную для ионизации атомов газа, наполняющего камеру. При ионизации электрон образует еще одну пару ион – электрон, так что общее количество зарядов умножается на два, как это показано на рис. 7.2. В свою очередь новообразовавшиеся электроны тоже способны к ионизации, и таким образом заряд умножается еще и еще. При специальной форме электродов коэффициент газового усиления может достигать 105. Существенным здесь является тот факт, что конечный заряд остается пропорционален первичному, а значит, и энергии электрона, образованного частицей или γ-квантом. Именно по этой причине такие приборы называются пропорциональными счетчиками.

Обычно пропорциональный счетчик делают в виде цилиндра, вдоль оси которого натягивают тонкую металлическую проволочку – нить. К корпусу счетчика подключают отрицательный, а к нити – положительный полюс источника тока. При таком устройстве электрическое поле сосредоточивается главным образом около нити и максимальное значение напряженности поля оказывается тем выше, чем меньше радиус нити. Поэтому необходимые для газового усиления большие напряженности полей удается получить при сравнительно небольших разностях потенциалов между корпусом счетчика и нитью.

Рис. 7.2. Пропорциональный счетчик

Пропорциональные счетчики получили широкое распространение благодаря своей простоте и большим импульсам тока при прохождении заряженных частиц. Сейчас пропорциональные счетчики используют главным образом для регистрации β-излучения, мягкого γ-излучения, α-частиц и нейтронов. На рис. 7.3 представлены основные тины пропорциональных счетчиков.

Рис. 7.3. Типы пропорциональных счетчиков

В электрическую цепь пропорциональный счетчик включается так же, как и ионизационная камера. И электрические импульсы от него получаются такие же, как от камеры, только большей величины. Казалось бы, стоит только применить достаточно высокое напряжение, чтобы газовое усиление было больше, и пропорциональный счетчик даст настолько большие импульсы, что работать с ними можно будет без дальнейшего усиления. Однако на самом деле это не так. Дело в том, что при больших газовых усилениях счетчик начинает работать нестабильно и пропорциональность между энергией частиц и амплитудой импульса нарушается.

Чтобы избежать появления пробоев и выровнять электрическое поле, счетчик приходится делать очень тщательно, зачищая и полируя его электроды. Отполировать же нить, диаметр которой измеряется сотыми долями миллиметра, очень сложно. Если электрическое поле в счетчике будет неоднородным вдоль нити, то импульс будет зависеть не только от энергии частицы, но и от места ее попадания в счетчик, что, естественно, нежелательно.

Поэтому конструкцию пропорционального счетчика часто приходится усложнять, вводя в него дополнительные электроды для выравнивания поля. В результате всех этих усложнений удается изготовить счетчики с газовыми усилениями в десятки, сотни, а иногда даже в тысячи раз, но и этого зачастую оказывается слишком мало, чтобы с получаемыми от них импульсами можно было работать без последующего усиления.

Рассмотрим, что произойдет, если еще больше увеличить напряжение между электродами счетчика. В этом случае при попадании в счетчик заряженной частицы образуется чрезвычайно мощная лавина электронов, которая с большой скоростью обрушивается на положительный электрод и выбивает из него несколько фотонов – квантов ультрафиолетового излучения.

Эти фотоны, попадая на отрицательный электрод, могут вырвать новые электроны, последние опять устремятся к положительному электроду и т.д. В результате в счетчике возникает так называемый самостоятельный разряд, который будет гореть с постоянной силой независимо от того, попадают в счетчик новые частицы или нет. (Точно так горит разряд в неоновых трубках световых реклам.)

Счетчик же должен реагировать на каждую попадающую в него частицу, поэтому такой режим работы никому не нужен. Однако, применяя специальные схемы включения или добавляя в атмосферу счетчика некоторые тяжелые газы, можно создать условия, при которых возникший при попадании в счетчик частицы самостоятельный разряд сам по себе будет гаснуть через очень короткое время. Таким образом, попадание в счетчик каждой новой частицы будет вызывать появление кратковременного, но довольно сильного тока.

Самым распространенным детектором (датчиком) ионизирующего излучения, работающим в описанном выше режиме, является счетчик Гейгера – Мюллера. Принцип его работы основан на возникновении разряда в газе при пролете ионизирующих частиц. В хорошо вакуумированный герметичный баллон с двумя электродами, находящийся под напряжением, введена газовая смесь, состоящая в основном из легко ионизируемых неона и аргона (устройство должно регистрировать β- и γ-излучение). Баллон может быть стеклянным, металлическим и др. Обычно счетчики воспринимают излучение всей своей поверхностью, но существуют и такие, у которых для этого в баллоне предусмотрено специальное "окно".

К электродам прикладывают высокое напряжение U (рис. 7.4), которое само по себе не вызывает каких-либо разрядных явлений. В этом состоянии счетчик будет пребывать до тех пор, пока в его газовой среде не возникнет центр ионизации – след из ионов и электронов, порождаемый пришедшей извне ионизирующей частицей. Первичные электроны, ускоряясь в электрическом поле, ионизируют "по дороге" другие молекулы газовой среды, порождая все новые и новые электроны и ионы. Развиваясь лавинообразно, этот процесс завершается образованием в межэлектродном пространстве электронно-ионного облака, резко увеличивающего его проводимость. В газовой среде счетчика возникает разряд, видимый (если баллон прозрачный) даже простым глазом.

Рис. 7.4. Схема включения счетчика Гейгера

Обратный процесс – возвращение газовой среды в ее исходное состояние в так называемых галогеновых счетчиках – происходит сам собой. В действие вступают галогены (обычно хлор или бром), в небольшом количестве содержащиеся в газовой среде, которые способствуют интенсивной рекомбинации зарядов. Но этот процесс идет значительно медленнее. Отрезок времени, необходимый для восстановления радиационной чувствительности счетчика Гейгера и фактически определяющий его быстродействие – "мертвое" время – является важной его паспортной характеристикой. Например, для газоразрядного счетчика Гейгера – Мюллера, типа СБМ-20-1 "мертвое" время при U = 400 В составляет 190 Р/мкс.

Счетчики Гейгера способны реагировать на самые разные виды ионизирующего излучения – альфа, бета, гамма, ультрафиолетовое, рентгеновское, нейтронное. Но реальная спектральная чувствительность счетчика в значительной мере зависит от его конструкции.

Амплитуда импульса от счетчика Гейгера – Мюллера может достигать нескольких десятков или даже сот вольт. С такими импульсами можно работать без всякого усиления. Но эта победа была завоевана дорогой ценой. Дело в том, что амплитуда импульса в счетчике Гейгера – Мюллера определяется только свойствами самого счетчика и параметрами электрической цепи и совершенно не зависит ни от вида, ни от энергии первичной частицы.

Импульсы от медленного электрона, создавшего всего лишь несколько пар ионов, и от α-частицы, создавшей несколько тысяч ионов, оказываются одинаковыми. Поэтому счетчики Гейгера – Мюллера можно использовать только для подсчета числа пролетевших частиц в однородных полях излучений, но не для определения их типа и энергии.