Введение. Нет ничего более противного разуму и постоянству природы, чем случайность

СИГНАЛЫ и ЛИНЕЙНЫЕ СИСТЕМЫ

Тема 17: СЛУЧАЙНЫЕ СИГНАЛЫ

Нет ничего более противного разуму и постоянству природы, чем случайность. Сам бог не может знать того, что произойдет случайно. Ибо если знает, то это определенно произойдет, а если определенно произойдет, то не случайно.

Марк Туллий Цицерон. О девинации.

Римский философ и политик, I в.д.н.э.

 

Случайность противна разуму, но не природе. Для проверки теории случайных процессов боги и создали мир. Швыряться яблоками они уже перестали, со времен Ньютона здесь ничего нового не наблюдалось. Но арбузные корки продолжают подсовывать - фиксируется непредсказуемая и зачастую очень даже интересная реакция.

Рудольф Гавшин. Случайность определенности.

Уральский геофизик, ХХ в.

Содержание: Введение. 17.1. Случайные процессы и функции. Случайный процесс. Функции математического ожидания и дисперсии. Корреляционная функция. Ковариационные функции. Свойства функций автоковариации и автокорреляции. Взаимные моменты случайных процессов. Классификация случайных процессов. 17.2. Функции спектральной плотности. Каноническое разложение случайных функций. Комплексные случайные функции. Финитное преобразование Фурье. Спектр функций случайных процессов. Взаимные спектральные функции. Теорема Винера-Хинчина. 17.3. Преобразования случайных функций. Системы преобразования случайных функций. Математическое ожидание выходного сигнала. Корреляционная функция выходного сигнала. Функция взаимной корреляции входного и выходного сигналов. Спектральные соотношения. Дисперсия выходного сигнала. Функция когерентности. Преобразования случайных функций. Преобразования стационарных случайных функций. 17.4. Модели случайных сигналов и помех. Телеграфный сигнал. Белый шум. Гауссовский шум. Гауссовские случайные процессы. Литература.

Введение.

Теория вероятностей рассматривает случайные величины и их характеристики в "статике". Задачи описания и изучения случайных сигналов "в динамике", как отображения случайных явлений, развивающихся во времени или по любой другой переменной, решает теория случайных процессов.

В качестве универсальной координаты для распределения случайных величин по независимой переменной будем использовать, как правило, переменную "t" и трактовать ее, чисто для удобства, как временную координату. Распределения случайных величин во времени, а равно и сигналов их отображающих в любой математической форме, обычно называют случайными процессами. В технической литературе термины "случайный сигнал" и "случайный процесс" используются как синонимы.

В отличие от детерминированных сигналов значения случайных сигналов в произвольные моменты времени не могут быть вычислены. Они могут быть только предсказаны в определенном диапазоне значений с определенной вероятностью, меньшей единицы. Количественные характеристики случайных сигналов, позволяющие производить их оценку и сравнение, называют статистическими.

В процессе обработки и анализа физико-технических данных обычно приходится иметь дело с тремя типами сигналов, описываемых методами статистики. Во-первых, это информационные сигналы, отображающие физические процессы, вероятностные по своей природе, как, например, акты регистрации частиц ионизирующих излучения при распаде радионуклидов. Во вторых, информационные сигналы, зависимые от определенных параметров физических процессов или объектов, значения которых заранее неизвестны, и которые обычно подлежать определению по данным информационным сигналам. И в третьих, это шумы и помехи, хаотически изменяющиеся во времени, которые сопутствуют информационным сигналам, но, как правило, статистически независимы от них как по своим значениям, так и по изменениям во времени.