Кислородно-метановые ЖРД Многоразового использования и требования к ним

 

Дальнейшее развитие ракетной техники и жидкостных ракетных двигателей связано со снижением затрат на выведение полезных нагрузок в космос и повышением безопасности полетов. Снижение стоимости выведения полезных нагрузок может быть достигнуто путем создания средств выведения многоразового использования.

Для повышения надежности конструкции ракет-носителей предлагается использовать двигательные установки первых ступеней носителя, состоящих из нескольких модульных двигателей, и в случае отказа одного из двигателей система аварийной защиты (САЗ) отключает отказавший двигатель, а оставшиеся работоспособные двигатели форсируются на величину тяги, компенсирующую потерю отказавшего двигателя. Тем самым обеспечивается выполнение задачи ракеты-носителя.

Разработка ЖРД на экологически чистых компонентах топлива: метан (сжиженный природный газ) в паре с жидким кислородом отвечает тенденциям развития современных ракет-носителей.

Во-первых, использование в двигателе двух криогенных компонентов во многом способствует решению задач по многоразовому использованию двигателя, так как после выключения кислородно-метанового ЖРД остатки топлива быстро испаряются из его магистралей.

Во-вторых, возможность реализации на данных компонентах топлива схем ЖРД с дожиганием восстановительного генераторного газа позволяет повысить надежность конструкции ракет-носителей: последствия от неисправностей в газовом тракте с избытком метана от генератора до камеры развиваются значительно медленнее, чем в газовом тракте с избытком кислорода, что облегчает задачу САЗ вовремя отключить отказавший двигатель.

Изучение метановых ЖРД началось в Японии около 20 лет назад как возможность совершенствования ракеты H-II. Недавно в Японии было начато рассмотрение возможностей создания двухступенчатой ракеты среднего класса "J-l upgrade", как замены существующей ракеты J-1, с использованием метанового ЖРД на второй ступени [2]. Проведены огневые испытания двигателя. Основной двигатель разработан специалистами компании XCOR Aerospace, и он пока не готов к использованию в космических полетах, но если технология себя оправдает, ракетные двигатели такого типа смогут стать ключом к межпланетным полетам и освоению дальнего космоса.

 

 

Видео: испытания метанового двигателя в пустыне Мохаве

 

Удивительно, но этот легковоспламеняющийся газ никогда раньше не использовался в качестве ракетного топлива. Только теперь группы ученых и инженеров из различных исследовательских центров разрабатывают жидко-кислородно-метановые двигатели будущего, чтобы облегчить процесс освоения космоса и сделать возможным межпланетные полеты.

У метана очень много преимуществ. Жидко-водородное топливо, используемое в космических аппаратах, должно храниться при температуре -252,9 градусов Цельсия - всего лишь на 20 градусов выше температуры абсолютного нуля! Жидкий метан, в свою очередь, можно хранить при более высоких температурах (-161,6 оС). Это означает, что баки с метаном не требуют мощной теплоизоляции, т.е. становятся легче и дешевле. Кроме того, баки могут быть меньше в размерах, т.к. жидкий метан плотнее жидкого водорода, что также может сэкономить много средств для запуска ракеты в космос. А еще метан безопасен для человека и экологически чист, в противоположность некоторым видам токсичного ракетного топлива, применяемым сейчас в космических аппаратах. Основным преимуществом метана, являются его значительные запасы, и относительно невысокая стоимость. Помимо этого, метан достаточно быстро испаряется, облегчая процесс очистки многоразовых топливных баков и двигателей. Кроме того, метановое топливо имеет более высокий удельный импульс, и по показателю тяги на один килограмм, превосходит керосин на семь-десять процентов.

Однако у нового топлива есть и недостатки. Метан обладает меньшей плотностью, а значит для его использования, потребуются более вместительные топливные баки.

Большой проблемой в разработке метановых двигателей остается вопрос о способности метана к воспламенению. Некоторые виды ракетного топлива воспламеняются спонтанно при применении окислителей, но метану требуется запал. Сделать такой запал очень тяжело на далеких планетах, где температура опускается на сотни градусов ниже нуля. Сейчас ведутся разработки такого запала, который надежно работал бы в любых условиях. У метана слегка хуже импульс, чем у водорода, однако это всё лучше, чем у керосина. При этом он намного дешевле, что важно при частых рейсах. Кроме того, его можно хранить при значительно более высоких температурах, а значит, он не будет подвергать охрупчиванию материал баков, как это происходит с жидким водородом.

Но все же самым важным является то, что метан есть на многих планетах и спутниках, которые NASA планирует посетить в будущем. Среди них - Марс. И хотя Марс не очень богат метаном, метан можно получить с помощью эффекта Сабатье: смешать немного углекислого газа (СО2)с водородом (Н), затем нагреть смесь для получения СН4 и Н2О - метана и воды. Атмосфера Марса содержит огромное количество углекислого газа, а небольшое количество водорода, требуемого для процесса, можно привезти с собой с Земли или добыть изо льда прямо на Марсе.

На спутнике Сатурна Титане в прямом смысле слова идут метановые дожди. Озера и реки из метана и других углеводородов на Титане могут стать заправочными станциями для космических кораблей. В атмосфере Юпитера, Сатурна, Урана и Нептуна также есть метан, а на поверхности Плутона есть много метанового льда. С помощью метановых ракетных двигателей становятся возможными полеты к этим мирам.