Общие сведения. 1. Абсолютной величиной, или модулём числа х, называется само число х, если число , если ноль, если

Задачи с параметрами

 

Уравнения с модулем

задачи типа заданий С 5

Дихтярь М.Б.

Общие сведения

 

1. Абсолютной величиной, или модулём числа х, называется само число х, если число , если ноль, если

При решении уравнения с модулем пользуемся тем, что

2. Построение графиков функций, содержащих модуль.

 

а) Построить график функции где

Решение.Имеем

Графиком функции , где является «уголок» с вершиной в точке и сторонами

График функции , где схематично изображён на рисунке 1, для случая когда

б) Построить график функции где

Решение.Имеем

Графиком функции , где , является «уголок» с вершиной в точке и со сторонами

График функции , где ,схематично изображён на рисунке 2, для случая когда

 

в) Построить график функции .

Решение. Найдём нули выражений, стоящих под знаком модуля:

Функция линейная на каждом промежутке , , . Для построения графика функции:

1) найдём значения функции в тех точках, в которых выражения, стоящие под знаком модуля равны нулю, а также в одной из точек, например, в точке , принадлежащей промежутку , и, например, в точке , принадлежащей промежутку . Имеем , ;

2) построим точки: (– 2; –1), (–1; 1), (2; 1), (3; 3);

3) на каждом промежутке , , построим часть прямой (функция линейная на каждом промежутке), проходящей через точки, абсциссы которых принадлежат соответствующему промежутку.

График функции схематично изображён на рисунке 3.

 

г) Построить график функции .

Решение. 1. Найдём нули выражений, стоящих под знаком модуля:

Нули выражений, стоящих под знаком модуля:

2. Так как функция линейная на каждом промежутке , , , , , то для того чтобы построить график функции на каждом промежутке проделаем следующее.

1) Найдём значения функции в тех точках, в которых выражения, стоящие под знаком модуля равны нулю, а также в точках и .

Имеем .

2) На плоскости построим точки

3). На каждом промежутке , , , , построим часть прямой, проходящей через точки, абсциссы которых принадлежат соответствующему промежутку.

График функции схематично изображён на рисунке 4.

3. Построение графика функции .

График функции получается из графика функции следующим образом:

а) строим график ;

б) те точки графика, для которых , остаются без изменения, а точки графика, для которых отображаются относительно оси х.

 

4.Примеры

Построить графики функций

1) 2) 3)

Решения.

1) а) Имеем

Из последнего уравнения следует, что графиком функции является парабола с вершиной в точке (2; –1), ветви которой направлены вверх. Точки пересечения параболы с осью абсцисс находим из уравнения

Строим график параболы (рис. 5 а).

б) Строим график функции (рис. 5 б).

2) а) Имеем

Из последнего уравнения следует, что графиком функции является парабола с вершиной в точке (2; 1), ветви которой направлены вверх. Так как вершина параболы расположена выше оси абсцисс и её ветви направлены вверх, то парабола не пересекает ось абсцисс. Тогда .

Таким образом, имеем .

Графиком функции является парабола .

 

Замечание. Графиком функции является гипербола, асимптотами которой являются прямые

3)

Имеем

Графиком функции является гипербола (рис. 6 а)), асимптотами которой являются прямые

б) Строим график функции (рис. 6 б)).