Современные представления

Концепцию пространства-времени допускает и классическая механика[2], но в ней это объединение искусственно, так как пространство-время классической механики — прямое произведение пространства на время, то есть пространство и время независимы друг от друга. Однако уже классическая электродинамика требует при смене системы отсчета преобразований координат, включающих время «наравне» с пространственными координатами (т. н. преобразований Лоренца), если желать, чтобы уравнения электродинамики имели одинаковый вид в любой инерциальной системе отсчета; непосредственно наблюдаемые временные характеристики электромагнитных процессов (периоды колебаний, времена распространения электромагнитных волн и т. п.) также оказываются таким образом уже в классической электродинамике зависящими от системы отсчета (или, иначе говоря, от относительного движения наблюдателя и объекта наблюдения), то есть оказываются не «абсолютными», а определенным образом связаны с пространственным движением и даже положением в пространстве, что и явилось первым толчком для формирования современной физической концепции единого пространства-времени.

Ключевым математическим отличием пространства-времени (пространства Минковского, или, в случае общей теории относительности — четырехмерного многообразия с псевдоевклидовой метрикой соответствующей сигнатуры) от обычного (евклидова) 4-мерного пространства является то, что при вычислении расстояния значения времени и длин пространственных координат берутся с противоположным знаком (в обычном пространстве соответствующие значения равноправны для любой оси координат и имеют одинаковый знак).

В контексте теории относительности время неотделимо от трех пространственных измерений и зависит от скорости наблюдателя[3].

Концепция пространства-времени сыграла исторически ключевую роль в создании геометрической теории гравитации. В рамках общей теории относительности гравитационное поле сводится к проявлениям геометрии четырехмерного пространства-времени, которое в этой теории не является плоским (гравитационный потенциал в ней отождествлен с метрикой пространства-времени).

Количество измерений, необходимых для описания Вселенной, окончательно не определено. Теория струн (суперструн), например, требовала наличия 10 (считая время), а теперь даже 11 измерений (в рамках М-теории). Предполагается, что дополнительные (ненаблюдаемые) 6 или 7 измерений свёрнуты (компактифицированы) до планковских размеров, так что экспериментально они пока не могут быть обнаружены. Ожидается, тем не менее, что эти измерения каким-то образом проявляют себя в макроскопическом масштабе. В самом старом — бозонном — варианте теория струн требует 26-мерного объемлющего пространства-времени; предполагается, что «лишние» измерения этой теории также должны или могут (или есть надежда, что так) быть компактифицированы сперва до 10, сводясь таким образом к теории суперструн, а потом уже, как упомянуто здесь чуть выше, до 4 обычных измерений.

Первый развёрнутый вариант модели естественного объединения пространства и времени, пространство Минковского, был создан Германом Минковским в 1908 году[4] на основе специальной теории относительности Эйнштейна, а несколько ранее (в 1905 году), ключевое продвижение на этом пути сделал Анри Пуанкаре, заложивший основы четырехмерного пространственно-временного формализма.