Производная сложной и обратной функций и функции, заданной параметрически

Арифметические действия над производными

Теорема 4.Если функции дифференцируемы в точке то в этой точке дифференцируемы и функции причем

(врассматриваемой точке ).

Если, кроме того, то в точке дифференцируемо и частное, причем

Доказательство проведем для производной суммы. Имеем поэтому

Теорема доказана.

 

Производная сложной и обратной функций и функции, заданной параметрически

Приведем без доказательства некоторые утверждения, связанные с производными.

Теорема 5.Пусть сложная функция определена в точке и некоторой ее окрестност и пусть выполнены условия:

1. функция дифференцируема в точке

2. функция дифференцируема в соответствующей точке

Тогда сложная функция дифференцирума в точке и имеет место равенство

 

Напомним следующие понятия:

а) Функция называется обратимой на множестве если

При этом функция сопоставляющая каждому элемент такой, что называется функцией, обратной к

Очевидно, имеют место тождества:

Заметим, что все строго монотонные на множестве функции обратимы на

б) Говорят, что функция задана параметрически уравнениями если функция обратима на отрезке В этом случае где функция, обратная к функции

Теорема 6.Пусть функцияв некоторой окрестности точки имеет обратную функцию Пусть, кроме того, функция дифференцируема в точке и Тогда обратная функция дифференцируема в соответствующей точке и имеет место равенство

Теорема 7.Пусть функция задана параметрически уравнениями и пусть выполнены условия:

1) функции дифференцируемы в фиксированной точке

2) в рассматриваемой точке

Тогда функция дифференцируема в точке и имеет место равенство