ВЕРОЯТНОСТИ ПЕРЕХОДА ЗА НЕСКОЛЬКО ШАГОВ

Мы обозначим через вероятность перехода из в ровно за шагов. Иначе говоря есть условная вероятность попадания в на -м шаге при условии, что начальным состоянием. Было ; она равна сумме вероятностей всех путей длины , начинающихся в и оканчивающихся в . В частности, и

(3.1)

По индукции мы получаем общую рекуррентную формулу

(3.2)

дальнейшая индукция по приводит к основному тождеству

(3.3)

(которое является частным случаем уравнения Колмогорова-Чепмена). Оно отражает тот простой факт, что первые шагов приводят из в некоторое промежуточное состояние и что вероятность последующего перехода из в не зависит от того, каким образом было достигнуто .

Так же как и в случае , образовавших матрицу , мы расположим в матрицу, которую обозначим . Тогда (3.2) утверждает, что для того, чтобы получит элемент матрицы , мы должны умножить элементы -й строки на соответствующие элементы -го столбца и сложить полученные произведения. Эта операция называется умножением матриц и и выражается символически равенством . Данное определение позволяет назвать -й степенью ; уравнение (3.3) выражает известный закон .

Для того чтобы (3.3) было справедливо для всех , мы определим , положив и при , что вполне естественно.

Примеры.а) Независимые испытания. Обычно бывает трудно получить явные выражения для вероятностей перехода за несколько шагов, однако, к счастью они не представляют особого интереса. Как важное, хотя и тривиальное исключение, мы отметим частный случай независимых испытаний. Этот случай имеет место тогда, когда все строки тождественно совпадают с данным распределением вероятностей, и ясно без вычислений, чт о отсюда следует равенство при всех .

б) Серии успехов. В примере д) (серии успехов) легко видеть (либо из рекуррентной формулы (3.2), либо из самого определения процесса), что

В этом случае ясно, что сходится к матрице, такой, что все элементы в ее столбце с номером равны .