Электризация тел

Макроскопическому телу можно сообщить заряд любого знака. Этот процесс называется электризацией. Существуют разные способы электризации тел, то есть превращения электрически нейтральных тел в заряженные; в частности, это можно осуществить путем трения тел друг о друга (электризация трением). Например, если надутый небольшой воздушный шар потереть о шерсть, мех или свои волосы, то шар будет прилипать к телу, о которое его потерли. Если янтарь потереть куском ткани, то он будет притягивать легкие предметы. То же можно наблюдать, если потереть тканью эбонитовую или стеклянную палочку. В этих случаях объект приобретает электрический заряд благодаря трению, то есть происходит электризация трением, а силы, действующие при этом, называются электрическими силами. Опыты показывают, что два тела, наэлектризованные трением друг о друга, притягиваются.

Известно, что наэлектризованные эбонитовая и стеклянная палочки обладают различным видом зарядов. Условились считать заряд, появляющийся при электризации трением на эбонитовой палочке или янтаре отрицательным, а на стеклянной палочке – положительным.

В настоящее время электризацию тел объясняют с помощью представления о переносе электронов с одного вещества на другое. Наружные электроны атомов вещества часто очень слабо привязаны к своему ядру и при трении, обеспечивающем максимальный контакт поверхностей трущихся веществ, они могут переходить от одного вещества к другому. Тело, получившее избыток электронов, заряжается отрицательно. Тело, потерявшее электроны – положительно.

В таблице 1.1 указаны виды зарядов, возникающих у тел при их электризации трением. Названия материалов, электризующихся при взаимном трении, расположены построчно в разных столбцах.

Таблица 1.1

ПОЛОЖИТЕЛЬНЫЕ ЗАРЯДЫ ОТРИЦАТЕЛЬНЫЕ ЗАРЯДЫ
Шерсть, мех Янтарь, смолы, сургуч, воск, сера, резина, пластмассы
Стекло, горный хрусталь, драгоценные камни Шелк, бумага

Кроме электризации трением, существует также и электризация индукцией. Рассмотрим ее на опыте (рис. 1.1). Имеются два незаряженных металлических шара.

а) б) в) г)
Рис. 1.1

Сначала они касаются друг друга (а). Затем к одному из них подносят (не касаясь) наэлектризованную палочку (б), после чего второй шар отодвигают (в). В результате оказывается, что оба шара зарядились (г).

а) б) в) г)
Рис. 1.2

Повторим опыт с шарами немного иначе (рис. 1.2). Возьмем два незаряженных металлических шара, касающихся друг друга (а). Поднесем палочку к шарам (б), затем уберем ее и только после этого раздвинем шары (в). Удивительно, но теперь шары окажутся незаряженными (г).

Если же для опыта использовать не металлические, а пластмассовые или резиновые шары, то наэлектризовать индукцией (то есть действием на расстоянии) нам их не удастся ни при каком способе раздвигания!

Рис. 1.3

Объяснить электризацию индукцией можно на основе микроструктуры вещества. В металлах, которые относятся к классу проводников, – веществ, хорошо проводящих электрический ток, – имеются свободные электроны, которые могут свободно двигаться. Когда к незаряженному металлическому шару подносят заряженное тело, электроны сдвигаются либо к подносимому заряженному телу, либо от него, в зависимости от знака его заряда. В других веществах, таких как пластмасса или резина, относящихся к классу изоляторов, ни положительные, ни отрицательные заряды не могут свободно перемещаться. Но, когда заряженное, например, положительно, тело подносят к пластмассовому стержню, конфигурация молекул стержня искажается таким образом, что его поверхность, обращенная к заряженному телу, окажется заряженной отрицательно, и наоборот.

Для обнаружения наэлектризованных тел служат специальные приборы – электроскопы. Внешний вид прибора приведен на рис 1.3. Цилиндрический корпус (1) закрыт стеклом (2). Внутрь прибора вставлен металлический стержень (3) с легкоподвижными лепестками (4). От металлического корпуса прибора стержень отделен пластмассовой втулкой (5). При соприкосновении заряженного тела со стержнем электроскопа электрические заряды одного знака распределяются по стержню и стрелке. Силы электрического отталкивания вызывают поворот стрелки на некоторый угол, по которому можно судить о заряде, переданном стержню электрометра (рис. 1.4).

Рис. 1.4

Проделайте опыты!

1. Отрежьте от тетрадного листа полоску бумаги шириной 1 см. Положив полоску на тетрадь, проведите по ней несколько раз пластмассовой ручкой с лёгким нажимом. Затем возьмите в одну руку полоску, а в другую – ручку, и сближайте их. Бумажная полоска изгибается в сторону ручки, следовательно, между ними возникают силы притяжения.

2. Положите две бумажные полоски рядом на тетрадь, проведите по ним ручкой несколько раз с лёгким нажимом. Возьмите полоски в руки и сближайте их. При сближении полоски изгибаются в противоположные стороны, следовательно, между ними действуют силы отталкивания.

3. Надуйте воздушный шарик и потрите его о шерсть или мех, или, лучше всего, о свои волосы, и вы обнаружите, что шар будет прилипать к телу, о которое вы его потёрли, и ко всем остальным окружающим его телам.

4. Возьмите кусочек рыхлой гигроскопической ваты массой 3–5 мг. Хорошо наэлектризуйте эбонитовую палочку и опустите на нее ватку. Она притянется и наэлектризуется. Рывком палки в сторону оторвите вату и быстро подведите палку под вату, а далее можно управлять ее движением.