Общие указания. Принцип действия сцинтилляционных счетчиков в корне отличен от механизма действия счетчиков газоразрядных

Принцип действия сцинтилляционных счетчиков в корне отличен от механизма действия счетчиков газоразрядных. Сцинтиллировать в переводе с английского языка значит сверкать, искриться. Работа сцинтилляционных счетчиков основана на регистрации вспышек видимого света, возникающих при попадании заряженных частиц в некоторые вещества. Вещества, обладающие свойством испускать свет при попадании в них заряженных частиц, называют сцинтилляторами. Для регистрации сцинтилляций применяют фотоэлектрические умножители (ФЭУ), позволяющие преобразовывать свет в электрический импульс и усиливать этот импульс в десятки миллионов раз. Сцинтиллятор и фотоумножитель представляют собой основные элементы сцинтилляционного детектора.

Заряженная частица, проходя через сцинтиллятор, наряду с ионизацией атомов и молекул, возбуждает их. Возвращаясь в невозбужденное (основное) состояние, атомы испускают фотоны. Детектирование нейтральных частиц ( -квантов, нейтронов) происходит по вторичным заряженным частицам, образующимся при взаимодействии нейтронов и -квантов с атомами сцинтиллятора.

В качестве сцинтилляторов используются различные вещества (твердые, жидкие, газообразные). Большое распространение получили пластики, которые легко изготовляются, механически обрабатываются и дают интенсивное свечение. Важной характеристикой сцинтиллятора является доля энергии регистрируемой частицы, которая превращается в световую энергию (конверсионная эффективность ). Наибольшими значениями обладают кристаллические сцинтилляторы: NaJ , активированный ,антрацен и . Другой важной характеристикой является время высвечивания , которое определяется временем жизни на возбужденных уровнях. Интенсивность свечения после прохождения частицы изменяется экспоненциально:

,

где - начальная интенсивность. Для большинства сцинтилляторов лежит в интервале с. Короткими временами свечения обладают пластики. Чем меньше , тем более быстродействующим может быть сделан сцинтилляционный счетчик.

Для того, чтобы световая вспышка была зарегистрирована ФЭУ, необходимо, чтобы материал сцинтиллятора был прозрачен для собственного излучения, а спектр излучения сцинтиллятора совпадал со спектральной областью чувствительности фотокатода ФЭУ.•

Для регистрации медленных нейтронов в сцинтиллятор добавляют Li или В. Изотоп 6Li , входящий в состав естественного Li , как и В, имеет большое сечение поглощения нейтронов, которое сопровождается реакцией:

.

Для регистрации быстрых нейтронов используются водородсодержащие сцинтилляторы.

Для спектрометрии - квантов и электронов высокой энергии используют , обладающий большой плотностью и высоким эффективным атомным номером.

Достоинства сцинтилляционных детекторов: высокая эффективность регистрации различных частиц (практически 100%); быстродействие; возможность изготовления сцинтилляторов различных размеров и конфигураций; высокая надежность и относительно невысокая стоимость. Благодаря этим качествам сцинтилляционные счетчики широко применяются в ядерной физике, физике элементарных частиц и космических лучей, в промышленности (радиационный контроль), дозиметрии, радиометрии, геологии, медицине и т. д.

Проследим теперь последовательно, как энергия, оставляемая частицей в сцинтилляторе, преобразовывается в электрический сигнал. На рис. 3.1 изображена схема современного, сцинтилляционного детектора. Чтобы "не потерять" излученный свет, необходим хороший контакт ФЭУ со сцинтиллятором, В сцинтилляционных счетчиках небольших размеров сцинтиллятор непосредственно приклеивается к фотокатоду ФЭУ. Все остальные его стороны покрываются слоем светоотражающего вещества. В сцинтилляционных счетчиках больших размеров используют световоды (обычно из полированного органического стекла).

Как уже было сказано выше, фотоумножитель в сцинтилляционном счетчике играет двоякую роль: он преобразует световой импульс в электрический и затем усиливает этот электрический- импульс. В соответствии с этим в нем используются два физических явления - фотоэффект и вторичная электронная эмиссия.

Схема сцинтилляционного детектора с фотоумножителем показана на рис. 3.1.


Рис.3.1.

Квант света попадает на фотокатод. Сейчас разработано множество типов фотокатодов, чаще всего они изготовляются на основе соединений щелочных металлов с сурьмой. Такой слой особенно чувствителен к свету сцинтилляций, обладая малой работой выхода. Благодаря внешнему фотоэффекту, кванты выбивают электроны, которые разгоняются приложенным напряжением (и одновременно фокусируются) на промежутке до следующего электрода-первого динода. Поверхность динода покрыта слоем вещества, для которого велик коэффициент вторичной эмиссии , т.е. число электронов, выбиваемых одним падающим электроном. Величина зависит от энергии падающих электронов и при ускоряющем потенциале 100 В составляет . Выбитые электроны летят ко второму диноду, ускоряясь приложенным напряжением, и процесс повторяется. Если ФЭУ имеет 10 динодов, то на последний электрод - анод приходит в среднем электронов, вызванных всего одним электроном, вылетевшим из фотокатода. На рис. 3.1 показан и способ подачи на электроды ФЭУ с помощью источника (U. =500-2000 В) и делителя из сопротивлений ускоряющего напряжения. Электрический импульс с анода поступает на электронную схему и в конце на экран анализатора или пересчетный прибор.

Источником излучения в данной работе служит поток частиц, образованных в атмосфере в результате взаимодействия частиц космического излучения с ядрами атомов. Подробно э.тот процесс описан в работе 2 настоящих методических указаний.