Детерминированная статическая модель с дефицитом

Эта модель отличается от предыдущей только тем, что превышение спроса над запасами уже допускается, т.е. штраф за нехватку конечный. График изменения уровня запаса в этом случае представлен на рис. 2.5.2. Убывание запаса в область отрицательных значений в отличие от графика на рис. 2.5.1 характеризует накопление дефицита. Каждый период пополнения запаса ts состоит в данном случае из суммы двух интервалов, где t1 – время, в течение которого производится потребление запаса, t2 – время, когда накапливается дефицит, который будет перекрыт в момент поступления следующей партии.

s

q

t1 t2 t1 t2 t1 t2 t1 t1 t2

ts ts ts ts ts

Т

Рис. 2.5.2. Кривая запасов. Модель с дефицитом.

Необходимость покрытия дефицита приводит к тому, что максимальный уровень запаса s теперь не равен размеру заказа q, а меньше его на величину дефицита q - s, накопившегося за время t2.

Из подобия треугольников на рис.2.5.2 имеем

t1 / ts = s / q, t2 / ts = (q – s) / q. (2.5.5)

Средний запас за время t1 равен s/2. Поэтому затраты на хранение за время t1 составляют t1c2s/2. Пусть c3 – величина штрафа за нехватку одной единицы продукции в единицу времени, тогда при среднем уровне дефицита за время t2, равном (q – s)/2, штраф за это время составляет t2c3(q – s)/2. Таким образом, ожидаемые суммарные расходы за время ts равны c1 + t1c2s/2 + t2c3(q – s)/2 или, поделив на ts, получаем общие затраты в единицу времени:

c1/ ts + (t1 /ts)c2s/2 + (t2 /ts)c3(q – s)/2.

Подставляя сюда (2.5.5) и ts = q / b, получаем выражение для общих затрат в единицу времени как функции от q и s:

с(q, s) = с1b/q + с2s2/(2q) + c3(q – s)2/(2q). (2.5.6)

Из уравнения (2.5.6) находим оптимальные значения объема заказа q* и максимального уровня запаса s*, при которых функция с (2.5.6) принимает минимальное значение. Для этого приравниваем частные производные ¶с/¶q, ¶с/¶s к нулю и после упрощений получаем систему уравнений:

 

s = qс3 /(с2 + с3), (2.5.7)

q2 с3 -2 + с3)s2 = 2с1b.

Решая эту систему относительно q и s, находим

q* = Ö2 с1´b/ с2 Ö(с2 + с3)/ с3 и s* = q*с3 /(с2 + с3). (2.5.8)

Определим минимальные ожидаемые суммарные накладные расходы за весь период Т:

С* = Тс(q*, s*) =ТÖ2с1с2bÖс3 /(с2 + с3). (2.5.9)

Оптимальный интервал времени между заказами равен:

ts* = q* /b = Ö2 с1/(b с2)Ö(с2 + с3)/ с3 . (2.5.10)

При сравнении результатов, полученных для моделей без дефицита и с дефицитом, можно заметить, что уравнения (2.5.2)-(2.5.4) можно получить из уравнений (2.5.8)-(2.5.10), если с3 ® ¥, действительно, отсутствие дефицита соответствует бесконечно большому штрафу за неудовлетворенный спрос. Отметим также, что ожидаемые суммарные расходы в модели с дефицитом меньше, чем в модели без дефицита, т.к. они отличаются на величину Ör =Öс3/(с23) < 1. Коэффициент r называется плотностью убытков из-за неудовлетворительного спроса и играет важную роль в управлении запасами.

Пример 2.5.3. Пусть сохраняются все условия примера 2.5.1, но только штраф с3 за нехватку теперь равен 0.4 руб. за одно изделие в день. Из уравнений (2.5.8)-(2.5.10) получаем:

q* = Ö2´1000´100/0.2Ö(0.2 + 0.4)/ 0.4 = 1225 ед.,

s* = 1225´0.4 /(0.2 + 0.4) = 817 ед.,

С* = 365Ö2´1000´0.2´100Ö0.4 /(0.2 + 0.4) = 59604 руб.,

ts* = 1225 /100 = 12.25 дней.

При оптимальной стратегии ожидаемый дефицит к концу каждого периода составлял бы 1225 – 817 = 408 изделий.