Задание 3. Статистическая проверка статистических гипотез

 

Приведено эмпирическое распределение дискретной случайной величины в виде таблицы. Случайная величина имеет смысл числа отказов. Частоты наблюдений отказов обозначены . Используя критерий , проверить на уровне значимости гипотезу о распределении генеральной совокупности по закону Пуассона.

 

Решение. Дана таблица

 

 

Найдем объем выборки по формуле

.

Число описывает число групп данных, приведенных в таблице наблюдений.

Вычислим оценку параметра распределения в законе для редких событий Пуассона

.

Формула Пуассона закона распределения вероятностей имеет следующий вид

,

где – число появлений заданного события, в нашем примере это число отказов.

Проведем расчеты вероятностей

.

Найдем теоретические частоты , применяя расчетную формулу

,

в которой величина означает номер группы данных в таблице отказов. Подставим теоретические частоты в таблицу расчета эмпирического критерия Пирсона

   

 

 

Эмпирический критерий находится путем суммирования данных, размещенных в последнем столбце таблицы расчета критерия Пирсона

,

где – общее число значимых групп данных.

Воспользуемся таблицами теоретического распределения, которое является функцией двух переменных ( – уровня значимости и числа степеней свободы )

Поскольку выполнено неравенство

,

то статистическую гипотезу о том, что генеральная совокупность распределена по закону редких событий Пуассона следует отвергнуть. При этом риск отвергнуть правильную гипотезу равен уровню значимости, т.е. в примере этот риск равен пяти процентам.

 

Задание 4. Доверительные интервалы для параметров нормального закона распределения

 

Найти с надежностью доверительный интервал оценки неизвестного математического ожидания для нормально распределенного признака , если даны значения: генеральное среднее квадратичное отклонение ; выборочное среднее ; объем выборки .

Решение. Неизвестное математическое ожидание находится в интервале .

Последняя в записи формула обозначает уравнение относительно t, содержащее функцию Лапласа :

,

Применяя таблицы функции Лапласа, находим неизвестное значение параметра . Определим величину

.

Найдем доверительный интервал

.

Доверительный интервал покрывает математическое ожидание для нормально распределенной случайной величины с заданной величиной надежности , которая называется также доверительной вероятностью. В данной задаче доверительная вероятность равна 0,99 или 99%.