Всякая элементарная функция непрерывна на своей области определения

 

Теорема 1:(об устойчивости знака непрерывной функции) Пусть функция f(х) непрерывна в точке х0 и f(х0)¹0. Тогда существует d>0 такое, что для всех хÎ(х0-d, х0+d) функция f(х) имеет тот же знак, что f(х0).

 

Теорема 2:(I теорема Больцано-Коши) Пусть функция f(х) непрерывна на отрезке [а; b] и на концах отрезка имеет значения разных знаков. Тогда существует точка сÎ(а; b), в которой f(с)=0.

Её геометрический смысл: непрерывная кривая при переходе с одной полуплоскости, границей которой является ось Ох, в другую пересекает эту ось.

 

Теорема 3:(II теорема Больцано-Коши) Пусть функция f(х) непрерывна на отрезке [а; b] причём f(а)=А f(b)=В и А<C<В. Тогда на отрезке [а; b] найдётся точка с такая, что f(с)=С.

Её геометрический смысл: непрерывная функция f(х) при переходе от одного значения к другому принимает и все промежуточные значения.

 

Следствие: Если функция f(х) определена и непрерывна на некотором промежутке Х, то множество её значений Y также представляет некоторый промежуток.

 

Определение 3: Функция f(x) называется ограниченной на отрезке [а; b], если существует число М>0 такое, что для всех хÎ[а; b] выполняется неравенство |f(x)|£M.

 

Теорема 4:(I теорема Вейерштрасса) Если функция f(х) определена и непрерывна на отрезке [а; b], то она ограничена на этом отрезке.

Замечание: для интервала (а; b) теорема неверна.

 

Определение 4: Точной верхней (нижней) гранью функции f(x), определённой на Х, называется наименьшая (наибольшая) из верхних (нижних) граней, ограничивающих Y сверху (снизу).

 

Теорема 5:(II теорема Вейерштрасса) Если функция f(х) непрерывна на отрезке [а; b], то она достигает на этом отрезке своих точных граней, то есть существуют точки х1, х2Î[а; b] такие что

Замечание: после этого можно ввести определения:

Определение 5: Точная верхняя (нижняя) грань функции f(x) называется максимальным (минимальным) значением функции на отрезке.

 

Теорема 5:(II теорема Вейерштрасса) Непрерывная на отрезке функция имеет на этом отрезке максимальное и минимальное значения.

 

Теорема 6:(о непрерывности обратной функции) Пусть функция у=f(х) определена, строго монотонна и непрерывна на некотором промежутке Х и пусть Y – множество её значений. Тогда на множестве Y обратная функция х=j(у) однозначна, строго монотонна и непрерывна.