РЕГУЛИРОВАНИЕ НАПРЯЖЕНИЯ ГЕНЕРАТОРОВ

Напряжение генераторов постоянного и переменного тока зависит от частоты вращения ротора, значения отдаваемого тока, магнит­ного потока возбуждения, сопротивления обмотки якоря (у гене­ратора постоянного тока) и полного сопротивления обмотки ста­тора (у генераторов переменного тока).

•Если учитывать (при грубом приближении) только основные фак­торы, то можно считать, что

Таким образом, для обеспечения постоянства напряжения гене­ратора при изменении частоты вращения ротора необходимо обратно пропорционально частоте изменять магнитный поток. Так как магнитный поток определяется силой тока возбуждения, регулирование напряжения осуществляется периодическим включе­нием в цепь возбуждения генератора и отключением из этой цепи добавочного резистора с постоянным сопротивлением. В настоя­щее время применяются вибрационные и полупроводниковые регу­ляторы напряжения.

Вибрационный регулятор напряжения. Вибрационный регулятор (рис. 18,а) имеет добавочный резистор Rд, который включается по­следовательно с обмоткой возбуждения ОВ. При замыкании контак­тов 4, один из которых неподвижен, а другой расположен на якорьке 3, добавочный резистор замкнут накоротко. Основная обмот­ка ОО регулятора, намотанная на сердечнике 5, включена на пол­ное напряжение генератора. Пружина 2 оттягивает якорек вверх, удерживая контакты в замкнутом состоянии. При этом обмотка возбуждения ОВ через контакты, якорек и ярмо 1 подключена, минуя добавочный резистор.

При неработающем генераторе в основной обмотке 00 регуля­тора тока нет и контакты под действием пружины замкнуты. С увеличением частоты вращения сила тока возбуждения генерато­ра и его напряжение растут. При этом увеличивается сила тока основной обмотки 00 регулятора и намагничивание сердечника. Пока напряжение генератора меньше установленной величины, силы магнитного притяжения якорька к сердечнику недостаточно для преодоления силы натяжения пружины и контакты регуля­тора остаются замкнутыми, а ток в обмотку возбуждения про­ходит, минуя добавочный резистор.

При дальнейшем увеличении напряжения генератора наступает такой момент, когда сила магнитного притяжения якорька к сердечнику преодолевает силу натяжения пружины и контакты регулятора размыкаются. Вследствие этого в цепь обмотки возбуж­дения включается добавочный резистор, и напряжение генератора резко падает.

Уменьшение напряжения приводит к уменьшению тока в обмотке регулятора напряжения и, следовательно, силы притяжения якорька к сердечнику. В результате контакты регулятора вновь замыкаются, а затем при увеличении напряжения генератора размыкаются.

Описанный процесс периодически повторяется. В результате этого возникают пульсации напряжения (рис. 18, б). Среднее значение напряжения Uср, измеряемое вольтметром, определяет регули­руемое напряжение генератора. С увеличением частоты враще­ния увеличивается время разомкнутого состояния tр и уменьшается время замкнутого состояния t3. Это приводит к уменьшению тока возбуждения IB (рис. 19).

Напряжение генератора, поддерживаемое регулятором, зависит от силы натяжения пружины. Изменением силы натяжения пружины осуществляется регулировка напряжения генераторной установки.

Уменьшение пульсаций напряжения происходит следующим обра­зом. Пульсации напряжения генератора зависят от частоты колебаний якорька регулятора. Чтобы пульсации напряжения не оказывали влияния на работу потребителей, якорек регулятора должен колебаться с частотой не менее 30 Гц. Кроме того, с увеличением частоты колебаний якорька уменьшается износ контактов.

Частоту колебаний повышают применением специальных уско­ряющих обмоток, которые наматывают на сердечник регулятора, или ускоряющих резисторов. Наиболее часто применяют схему вибрационного регулятора напряжения с ускоряющим резистором (рис. 20). Здесь основная обмотка 00 регулятора подключается к генератору через ускоряющий резистор Rу, который включен последовательно с резистором Rд. Резистор Rу также является добавочным в цепи обмотки возбуждения генератора. Таким обра­зом, напряжение на обмотке регулятора равно разности между напряжением генератора и падением напряжения в ускоряющем резисторе.

Ускоряющее действие резистора Rу заключается в следующем.При замкнутых контактах регулятора через ускоряющий резистор походит ток только обмотки регулятора, величина которого составляет доли ампера. Напряжение, приложенное к обмотке регулятора, почти равно напряжению генератора, так как падение напряжения в ускоряющем резисторе очень незначительно.

При размыкании контактов ток возбуждения генератора, который вследствие явления самоиндукции не может изменяться скачком, в первый момент сохраняет свою величину и направление. Ток возбуждения проходит по ускоряющему резистору, что приво­дит к резкому увеличению падения напряжения на нем и резкому уменьшению напряжения на обмотке регулятора. Скачкообразное уменьшение напряжения в ос­новной обмотке 00 регулятора в момент размыкания контактов резко уменьшает в ней ток, а следовательно, и силу притя­жения якоря регулятора к се­рдечнику. Благодаря этому кон­такты быстро замыкаются вновь. В результате частота колебаний якоря увеличива­ется до 150—250 Гц и, сле­довательно, уменьшается пуль­сация напряжения. При при­менении ускоряющих устройств возникает отрицательное явление, связанное с увеличением напряжения генератора при увеличении частоты вращения ротора. Возрастание напряжения с увеличением частоты вращения ротора предотвращается при помощи выравнивающих обмоток или выравнивающих резисторов.

Для стабилизации напряжения наибольшее распространение получили схемы с выравнивающими обмотками (рис. 21).

Выравнивающую обмотку ВО включают в цепь через контакты регулятора последовательно с обмоткой возбуждения ОВ генератора. Ее наматывают на сердечник таким образом, чтобы ее магнитный по­ток противодействовал магнитному потоку основной обмотки 00 ре­гулятора. Магнитный поток, создаваемый выравнивающей обмоткой, значительно меньше магнитного потока, создаваемого основной обмоткой регулятора.

При увеличении частоты вращения ротора в результате увеличе­ния времени разомкнутого состояния контактов уменьшается сила то­ка не только в основной, но и в выравнивающей обмотке. Поэ­тому уменьшение магнитного потока, создаваемого основной об­моткой, сопровождается таким же по величине уменьшением магнит­ного потока, создаваемого выравнивающей обмоткой, и результи­рующий магнитный поток почти не изменяется. В результате размыкание контактов регулятора происходит независимо от частоты вращения ротора при напряжении, установленном регулировкой.

Рабочая температура регулятора меняется в значительных преде­лах (от -50 до +125 °С). Сопротивление основной обмотки регулятора напряжения, выполняемой из меди, изменяется от тем­пературы (возрастает на 40% при нагреве обмотки на 100 °С). Поэ­тому при повышении температуры основной обмотки уменьшается ток в ней и, следовательно, магнитный поток. В результате регулятор начинает работать при напряжении, большем того, на которое он от­регулирован.

Температурная компенсация осуществляется следующим обра­зом.

Для уменьшения влияния температуры на работу вибрацион­ного регулятора последовательно основной обмотке регулятора, которую выполняют с меньшим сопротивлением, включают доба­вочный резистор из нихрома или константана. Сопротивление этих материалов практически не* меняется от температуры. В резуль­тате суммарное изменение сопротивления цепи основной обмотки регулятора от температуры в несколько раз уменьшится. Таким образом, возрастание регулируемого напряжения составит пример­но 10% при нагреве на 100 °С. В ряде регуляторов роль термокомпенсационного резистора выполняет ускоряющий резистор.

Для более полной термокомпенсации вместе с резистором применяют биметаллическую пластину, на которой подвешивают якорек регулятора. Биметаллическая пластина имеет два слоя. Материалы слоев обладают резко отличающимися коэффициентами теплового расширения.

Биметаллическую пластину приклепывают к якорьку и закреп­ляют на ярме регулятора. При этом слой материала с малым коэф­фициентом температурного расширения обращен к сердечнику. При повышении температуры пластина изгибается и создает усилие, направленное против усилия пружины, и таким образом способствует вступлению регулятора в работу при меньшем напря­жении. Таким образом и обеспечивается температурная компенсация.

Для термокомпенсации применяют также магнитные шунты. Маг­нитный шунт МШ (см. рис. 26) представляет собой пластину из железоникелевого или иного термомагнитного сплава с магнитным сопротивлением, увеличивающимся при повышении температуры. Пластина закреплена в верхней части регулятора между сердечником и ярмом параллельно якорьку.

При повышении температуры магнитное сопротивление шунта возрастает. При низких температурах магнитное сопротивление шунта мало, и часть магнитного потока сердечника, минуя якорек, замыкается через магнитный шунт. Таким образом компенсируется изменение магнитного потока, возникающее в резуль­тате изменения сопротивления основной обмотки регулятора от температуры. Применение магнитного шунта исключает необходи­мость в термокомпенсационном резисторе и биметаллической пла­стине.

Недостатки вибрационных регуляторов состоят в следующем. Вибрирующие контакты и пружины являются основным недо­статком вибрационных регуляторов, затрудняющим их настройку и повышающим чувствительность к вибрации. В результате изменения характеристик пружин вибрационные устройства подвер­жены разрегулировкам.

Обычный вибрационный регулятор напряжения может приме­няться с генераторами, у которых сила тока возбуждения не более 1,5—1,8 А. При больших значениях силы тока значительно сокра­щается срок службы контактов.

Особенно сказываются недостатки вибрационных регуляторов при работе с генераторными установками переменного тока, у которых сила тока возбуждения значительно больше, чем у гене­раторов постоянного тока. Чтобы получить возможность использо­вать вибрационный регулятор с мощными генераторами, применя­ют следующие способы. Часто используют не один, а два регуля­тора напряжения. Для этого обмотку возбуждения генератора раз­деляют на две одинаковые по своим параметрам и параллельно включенные ветви. Сила тока каждой ветви регулируется своим регулятором. При этом сила тока, разрываемого контактами, уменьшается вдвое.

Для уменьшения силы тока разрыва применяют также двухсту­пенчатое регулирование напряжения. Двухступенчатый регулятор напряжения имеет две пары контактов и добавочный резистор с меньшим сопротивлением. Подробно работа двухступенчатого регу­лятора рассмотрена на конкретном примере. Недостатки вибрационных регуляторов вызвали в последние годы применение с мощными генераторами полупроводниковых регуляторов напряже­ния.

Полупроводниковые регуляторы напряжения. В полупроводнико­вых регуляторах сила тока возбуждения регулируется при помощи транзисторов, эмиттерноколлекторная цепь которого включена по­следовательно с обмоткой возбуждения генератора.

Транзистор работает аналогично контактам вибрационного регу­лятора. При повышении напряжения генератора выше заданного уровня транзистор переключается в закрытое состояние (разомкну­тые контакты). При понижении уровня регулируемого напряжения транзистор переключается в открытое состояние (замкнутые кон­такты). В состоянии «открыт» сопротивление транзистора составляет доли ома, в состоянии «закрыт» — бесконечно большое значение. Полупроводниковые регуляторы напряжения могут выполняться контактно-транзисторными и бесконтактными.

Контактно-транзисторный регулятор (рис. 22) содержит в своей схеме вибрационное реле, управляющее транзистором Т.

Работает регулятор следующим образом. До момента достиже­ния генератором регулируемого значения напряжения Ur силы тока обмотки вибрационного реле недостаточно, чтобы контакты замкну­лись. При этом транзистор открыт, так как через него проте­кает ток базы по цепи: «плюс» генератора, переход эмиттер-база, резистор Rб, корпус генератора.

Через обмотку возбуждения ОВ в этом случае протекает полный ток возбуждения, и напряжение генератора возрастает с возрастанием частоты вращения ротора. Полное отпирание тран­зистора осуществляется подбором сопротивления резистора Rб.

При достижении напряжением генератора регулируемого значе­ния ток в основной обмотке OO реле достигает значения, при котором реле срабатывает. При замкнутых контактах потенциалы базы и эмиттера становятся равными, так как контакты шунтиру­ют переход эмиттер — база. Вследствие этого ток базы становится равным нулю, что приводит к запиранию транзистора.

В результате запирания транзистора ток возбуждения, под­держиваемый э.д.с. самоиндукции обмотки возбуждения, протекая через гасящий диод Дr, уменьшается. При этом уменьшается напряжение генератора Ur, контакты реле размыкаются, и тран­зистор открывается. Затем процесс повторяется.

Гасящий контур, выполняемый обычно в виде диода Дr, явля­ется обязательным элементом любого транзисторного регулятора. Если бы его не было, э.д.с. самоиндукции обмотки возбуждения, возникающая в момент закрытого состояния транзистора и достига­ющая несколько сотен вольт, могла бы вызвать пробой коллектор­ного перехода и отказ транзистора в работе.

В контактно-транзисторном регуляторе напряжения через контакты протекает незначительный ток, благодаря чему увеличива­ется срок их службы. Однако надежность работы регулятора по-прежнему определяется усталостной прочностью и возможной разрегулировкой пружины. Указанный недостаток исключен в бес­контактных схемах регулирования напряжения.

Бесконтактный регулятор напряжения (рис. 23) содержит тран­зистор T1, который выполняет функции контактов в контактно транзисторном регуляторе. Управление транзистором T1 осуществля­ется резисторами R1, R2 и стабилитроном Д1.

При напряжении генератора меньше регулируемого значения напряжение на резисторе R1, включенном параллельно стабилитро­ну Д1, меньше значения, соответствующего пробою стабилитрона. Стабилитрон при этом не проводит ток. следовательно, ток базы транзистора T1 равен нулю. Транзистор T1 при этом закрыт, что соответствует разомкнутому состоянию контактов, а транзистор Т2 открыт.

При достижении генератором уровня напряжения, соответ­ствующего регулируемому значению, напряжение на резисторе R1 повышается до значения, при котором стабилитрон пробивается, т. е. его сопротивление в обратном направлении резко уменьша­ется. В результате возникает ток базы транзистора T1, проте­кающий по цепи: «плюс» генератора, переход эмиттер — база тран­зистора T1, стабилитрон Д1, резистор R2, «минус» генератора. Транзистор T1 при этом открывается, что соответствует замкнутому состоянию контактов, транзистор Т2 запирается, а ток возбуждения и напряжение генератора уменьшаются. Вследствие этого напряже­ние на стабилитроне снижается ниже напряжения стабилизации, и он запирается, прерывая ток базы транзистора T1. Транзистор T1 запи­рается, а транзистор Т2 переключается в открытое состояние и т. д. Соотношение сопротивлений резисторов R1 и R2 определяет уровень регулируемого напряжения.

Схемы бесконтактных регуляторов, применяемых на практике, имеют ряд дополнительных элементов, улучшающих рабочие ха­рактеристики. Назначение дополнительных элементов рассмотрено на примерах схем конкретных регуляторов.