ВРОЖДЕННЫЕ НАРУШЕНИЯ ОБМЕНА АМИНОКИСЛОТ

Большая часть аминокислот в организме связана в белках, зна­чительно меньшая может выполнять функцию нейромедиаторов (глицин, у-аминомасляная кислота), служить предшественниками гормонов (фенилаланин, тирозин, триптофан, глицин), коферментов, пигментов, пуринов и пиримидинов.

Современные представления о врожденных болезнях метабо­лизма основываются на результатах изучения нарушений обмена аминокислот. В настоящее время известно более 70 врожденных аминоацидопатий. Каждое из этих нарушений встречается редко. Их частота колеблется от 1:10 000 (фенилкетонурия) до 1:200 000 (алкаптонурия). При одних дефектах определяется избыток амино­кислоты-предшественника, при других накапливаются продукты ее распада. Характер нарушения зависит от места ферментативного блока, обратимости реакций, протекающих выше поврежденного зве­на, и существования альтернативных путей «утечки» метаболитов.

Аминоацидопатиям свойственна биохимическая и генетическая гетерогенность: различают 4 формы гиперфенилаланинемии, 3 ва­рианта гомоцистинурии, 5 типов метилмалоновой ацидемии. Кли­нические проявления многих аминоацидопатий можно предотвра­тить или ослабить при ранней диагностике и своевременном нача­ле адекватного лечения: ограничение белка и аминокислот в диете, добавка витаминов. Вот почему среди новорожденных проводится скрининг на аминоацидопатий с использованием разнообразных химических и микробиологических методов анализа крови или мочи. Кроме того, для диагностики врожденных нарушений обмена аминокислот используют:

—прямой ферментный метод, используя экстракты лейкоци­тов, эритроцитов, культуру фибробластов;

—ДНК-ДНК-блотгибридизацию с использованием культуры клеток амниотической жидкости.

К числу наиболее распространенных аминоацидопатий отно­сится фенилкетонурия — одна из разновидностей гиперфенилала­нинемии, обусловленной нарушением превращения фенилаланина в тирозин вследствие снижения активности фенилаланингидрокси-лазы. Дефект наследуется аутосомно-рецессивно, широко распрост­ранен среди европеоидов и жителей Востока. В заметных количе­ствах фенилаланингидроксилаза обнаружена только в печени и ночках. Прямым следствием нарушения гидроксилирования фени­лаланина является накопление его в крови и моче и снижение об­разования тирозина. Концентрация фенилаланина в плазме дости­гает уровня, достаточно высокого (более 200 мг/л) для активации альтернативных путей обмена с образованием фенилпирувата, фе. нилацетата, фениллактата и других производных, которые подвер­гаются почечному клиренсу и выводятся с мочой. Избыток фенила ланина в жидких средах организма тормозит всасывание в желудочно-кишечном тракте других аминокислот, а это лишает голов ной мозг других аминокислот, необходимых для синтеза белка, сопровождается нарушением образования или стабилизации полири­босом, снижением синтеза миелина и недостаточным синтезом норадреналина и серотонина.

Фенилаланин — конкурентный ингибитор тирозиназы, являю­щейся ключевым ферментом на пути синтеза меланина. Блокада этого пути наряду с уменьшением доступности предшественника меланина (тирозина) обусловливает недостаточную пигментацию волос и кожи.

У новорожденных никаких отклонений от нормы не отмечают, однако дети, оставленные без лечения с классической фенилкетонурией, отстают в развитии; у них прогрессируют нарушения функ­ций головного мозга. Гиперактивность и судороги, прогрессирую­щая дисфункция головного мозга и базальных ганглиев обуславливают резкое отставание в психическом развитии, хорею, гипотензию, регидность мышц. Вследствие накопления фенилаланина является «мышиный» запах кожи, волос и мочи, склонность к гипопигментации и экземе. Несмотря на ранний диагноз и стандартное лечение дети погибают в первые несколько лет жизни от вторичной инфекции.

У новорожденного содержание фенилаланина в плазме может быть в пределах нормы при всех 4 типах гиперфеиилаланинемии но после начала кормления белком уровень фенилаланина в крови быстро увеличивается и уже обычно на 4-й день превышает норму.

Классическую фенилкетонурию можно диагностировать прена-тально по полиморфизму длины рестрикционных фрагментов, идентифицируемому с помощью ДНК-ДНК-блотгибридизации, и после рождения ребенка по определению концентрации фенилала­нина в крови по методу Гутри (ингибирование роста бактерий).

Резкое нарушение катаболизма тирозина вследствие недостаточности фермента оксидазы гомогентизиновой кислоты обусловливает развитие алкаптонурии (алкаптон — окрашенный поли мер продуктов окисления гомогентизиновой кислоты). Дефект го фермента вызывает повышенную экскрецию гомогентизиновой кислоты с мочой и накопление окисленной гомогентизиновой лоты в соединительной ткани (охроноз). Со временем охроноз обусловливает развитие дегенеративного артрита.

Гомогентизиновая кислота — это промежуточный продукт пре­вращения тирозина в фумарат и ацетоацетат. При снижении ак­тивности оксидазы гомогентизиновой кислоты в печени и почках нарушается раскрытие фенольного кольца тирозина с образовани­ем малеилацетоуксусиой кислоты. Вследствие этого в жидких сре­дах и клетках организма накапливается гомогентизиновая кислота. Эта кислота и особенно ее окисленные полимеры связываются кол­лагеном, что приводит к усилению накопления серого или сине-чер­ного пигмента (охроноз) с развитием дистрофических изменений в хрящах, межпозвоночных дисках и других соединительнотканных образованиях. Заболевание наследуется аутосомно-рецессивно.

Алкаптонурия может оставаться нераспознанной вплоть до развития дистрофических повреждений суставов. Такие симпто­мы, как способность мочи больных темнеть при стоянии и легкое изменение окраски склер и ушных раковин, долгое время могут оказываться незамеченными, хотя это самые ранние внешние при­знаки заболевания. Затем появляются очаги серо-коричневой пиг­ментации склер и генерализованное потемнение ушных раковин, противозавитка и завитка. Ушные хрящи фрагментируются и утолщаются. Появляется охронозный артрит с болевыми симпто­мами и тугоподвижностью, особенно в тазобедренных, коленных и плечевых суставах.

 

Аминокислота тирозин, поступающая с белками пищи и обра­зующаяся из фенилаланина, может превращаться:

1) в фенилпируват после переаминирования с а-кетоглютаратом, окисление которого приводит к образованию гомогентизино­вой кислоты; последняя, окисляясь, превращается в фумаровую, за­тем ацетоуксусную кислоту, которая включается в цикл Кребса;

2) ДОФА (n-диоксифенилаланин) при участии тирозиназы в норадреналин и меланин;

3) в тетра- и грийодтиронин после йодирования;

4) подвергаться декарбоксилированию.

Нарушение различных стадий окислительного превращения тирозина при участии тирозиназы и, следовательно, образование из него меланина обусловливает развитие альбинизма. Задержка окисления тирозина на стадии оксифенилпировиноградной кислоты (при недостатке витамина С и поражении паренхимы печени) индуцирует тирозиноз, который проявляется в повышенной экскреции с мочой оксифенилпирувата. Межуточный обмен триптофана характеризуется тем, что он сравнительно мало вовлекается в реакции переаминирования и дезаминирования. Большая часть триптофана превращается в никотиновую кислоту (витамин РР), и на этом этапе образуется ряд про­межуточных продуктов: кинуренин, ксантуреновая кислота, оксиант-раниловая кислота и другие. Повышение их концентрации в крови оказывает общее токсическое действие; ксантуреновая кислота нару­шает образование инсулина. Патология обмена триптофана может быть связана с недостаточностью специфических ферментов, коферментов и витамина В6, участвующих в его обмене, а также при оча­говых и диффузных поражениях печени, при инфекционных заболе­ваниях, при лечении противотуберкулезными препаратами.

 

Своеобразным нарушением обмена аминокислот является аминоацидурия повышенное их выделение с мочой. Причины аминоацидурии: нарушение дезаминирования аминокислот при пораже­нии печени и нарушение реабсорбции аминокислот в почечных ка­нальцах при поражении почек.

При острой дистрофии печени или терминальной стадии цир­роза потеря с мочой аминокислот весьма значительна. Аминоацидурия возникает и при других патологических процессах (кахексия, обширные травмы, мышечная атрофия, гипертиреоз), течение кото­рых характеризуется усиленным распадом тканевых белков и уве­личением содержания аминокислот в крови.

Иногда в моче отмечается увеличенное содержание цистина — цистинурия как врожденная аномалия обмена, для которой харак­терно образование цистиновых камней в мочевыводящих путях. Более тяжелое нарушение обмена цистина — цистиноз, который сопровождается общей аминоацидурией, отложением кристаллов цистина в тканях и характеризуется ранним летальным исходом.

В целом, в основе нарушения межуточного обмена аминокис­лот лежит патология ферментативных систем (врожденные анома­лии синтеза ферментов, общая белковая недостаточность, дистро­фические процессы) или недостаточность тех или иных витаминов, гипоксия, сдвиг рН и др.

Патофизиологическое значение нарушений межуточного звена белкового обмена состоит в том, что при этих нарушениях появля­ются токсические продукты обмена и нарушаются количественные соотношения между аминокислотами, что в конечном итоге создает условия для нарушения процессов синтеза белка, образования и эк­скреции конечных продуктов белкового обмена.