Свойства химических элементов, а также формы и свойства образуемых ими соединений находятся в периодической зависимости от величины заряда ядер их атомов

 

Периодический закон – основа современной химии. На знании периодического закона базируются все научные направления и исследования в химии: изучение взаимопревращений веществ, получение новых материалов, теоретическое изучение строение веществ, типов химических связей и так далее.

Заряд ядра определяет число электронов в атоме, каждый последующий элемент имеет на один электрон больше, чем предыдущий. Заряд ядра определяет строение электронной оболочки атома в основном состоянии. Элементы располагаются в периодической системе элементов в порядке возрастания заряда ядер их атомов. У элементов периодически повторяются электронные конфигурации атомов и, как следствие этого, периодически повторяются химические свойства, которые определяются электронной конфигурацией атомов. Периодичность электронного строения проявляется в том, что через определенное число элементов снова повторяются s-, p- и d-элементы с одинаковым конфигурациями электронных подуровней.Периодичность присуща всей электронной оболочке атомов, а не только ее внешним слоям. Периодичность электронных структур приводит к периодическому изменению ряда химических и физических свойств элементов: атомных радиусов, энергий ионизации, сродства к электрону, электроотрицательности. Обсудим это более конкретно.

Атомные радиусы химических элементов изменяются периодически в зависимости от заряда ядра атома (или порядкового номера элемента). В периодах радиусы атомов уменьшаются от щелочного металла до галогена. Так атомный радиус атома натрия 0.186 нм, магния – 0.16 нм, хлора – 0.099 нм. Атомный радиус следующего щелочного металла, открывающего последующий период, резко увеличивается, радиус у него гораздо больше радиуса щелочного металла, стоящего над ним. Например: радиус атома натрия 0.186 нм, а атома калия 0.231 нм.

Уменьшение радиусов атомов в периодах слева направо, то есть с увеличением заряда ядра атома объясняется тем, что увеличение заряда ядра атома способствует более сильному притяжению электронов данного электронного уровня к ядру (оно действует сильнее отталкивания электронов друг от друга).

В группах с ростом заряда ядра атома (сверху вниз) радиусы атомов увеличиваются. Это объясняется тем, что каждый элемент, стоящий ниже, имеет на один электронный уровень больше, поэтому у него больше и радиус атома. Эта закономерность ярче проявляется у элементов главных подгрупп (у s- и p-элементов), чем у элементов побочных подгрупп (d-элементы).

В этих рассмотренных закономерностях есть исключения, но обсуждать их мы не будем, так как это не входит в рамки нашей программы.

Укажем еще на то, что необходимо различать радиусы свободного атома и следующие радиусы:

а) ковалентный радиус – это половина межъядерного расстояния в молекулах или кристаллах соответствующих простых веществ (т.е. веществ с ковалентным типом связи);

б) металлический радиус – это половина расстояния между центрами двух соседних атомов в кристаллической решетке металла;

в) ионные радиусы атомов рассматриваются как половина расстояния суммы радиусов катиона и аниона (следует помнить, что радиусы катионов всегда меньше атомных радиусов соответствующих элементов, а радиусы анионов – больше радиусов атомов соответствующих элементов).

Энергия ионизации и сродство к электрону это параметры, которые позволяют оценить способность атомов терять и принимать электроны.