Системы, расположенные на материнской плате

 

Оперативная память

 

Оперативная память (RAM — Random Access Memory) — функциональная часть ЭВМ, предназначенная для хранения и (или) выдачи входной информации, про­межуточных и окончательных результатов, вспомогательной информации. Существует много различных типов оператив­ной памяти, но с точки зрения физического принципа действия различают дина­мическую память (DRAM) и статическую память (SRAM).

Ячейки динамической памяти (DRAM) можно представить в виде микроконденсаторов, способных накапливать заряд на своих обкладках. Это наиболее распространенный и экономически доступный тип памяти. Недостатки этого типа связаны, во-первых, с тем, что как при заряде, так и при разряде конденсаторов неизбежны переходные процессы, то есть запись данных происходит сравнительно медленно. Второй важный недостаток связан с тем, что заряды ячеек имеют свойство рассеи­ваться в пространстве, причем весьма быстро. Если оперативную память постоянно не «подзаряжать», утрата данных происходит через несколько сотых долей секунды. Для борьбы с этим явлением в компьютере происходит постоянная регенерация (освежение, подзарядка) ячеек оперативной памяти. Регенерация осуществляется несколько десятков раз в секунду и вызывает непроизводительный расход ресурсов вычислительной системы.

Ячейки статической памяти (SRAM) можно представить как электронные микро­элементы — триггеры, состоящие из нескольких транзисторов. В триггере хранится не заряд, а состояние (включен/выключен), поэтому этот тип памяти обеспечивает более высокое быстродействие, хотя технологически он сложнее и, соответственно, дороже.

Микросхемы динамической памяти используют в качестве основной оперативной памяти компьютера. Микросхемы статической памяти используют в качестве вспо­могательной памяти (так называемой кэш-памяти), предназначенной для опти­мизации работы процессора.

Каждая ячейка памяти имеет свой адрес, который выражается числом. В настоя­щее время в процессорах Intel Pentium и некоторых других принята 32-разрядная адресация, а это означает, что всего независимых адресов может быть 232. Таким образом, в современных компьютерах возможна непосредственная адресация к полю памяти размером 232= 4 294 967 296 байт (4,3 Гбайт). Однако это отнюдь не означает, что именно столько оперативной памяти непременно должно быть в ком­пьютере. Предельный размер поля оперативной памяти, установленной в компью­тере, определяется микропроцессорным комплектом (чипсетом) материнской платы и обычно составляет несколько сот Мбайт.

Одна адресуемая ячейка содержит восемь двоичных ячеек, в которых можно сохра­нить 8 бит, то есть один байт данных. Таким образом, адрес любой ячейки памяти можно выразить четырьмя байтами.

Представление о том, сколько оперативной памяти должно быть в типовом компью­тере, непрерывно меняется. В середине 80-х годов поле памяти размером 1 Мбайт казалось огромным, в начале 90-х годов достаточным считался объем 4 Мбайт, к середине 90-х годов он увеличился до 8 Мбайт, а затем и до 16 Мбайт. Сегодня типичным считается размер оперативной памяти 32-64 Мбайт, но очень скоро эта величина будет превышена в 2-4 раза даже для моделей массового потребления.

Оперативная память в компьютере размещается на стандартных панельках, назы­ваемых модулями. Модули оперативной памяти вставляют в соответствующие разъемы на материнской плате. Если к разъемам есть удобный доступ, то опера­цию можно выполнять своими руками. Если удобного доступа нет, может потре­боваться неполная разборка узлов системного блока, и в таких случаях операцию поручают специалистам.

Конструктивно модули памяти имеют два исполнения — однорядные (SIMM-модули) и двухрядные (DIMM-модули). На компьютерах с процессорами Pentium однорядные модули можно применять только парами (количество разъемов для их установки на материнской плате всегда четное), а DIMM-модули можно устанав­ливать по одному. Многие модели материнских плат имеют разъемы как того, так и другого типа, но комбинировать на одной плате модули разных типов нельзя.

Основными характеристиками модулей оперативной памяти являются объем памяти и время доступа. SIMM-модули поставляются объемами 4,8,16,32 Мбайт, а DIMM-модули — 16,32,64,128 Мбайт и более. Время доступа показывает, сколько времени необходимо для обращения к ячейкам памяти — чем оно меньше, тем лучше. Время доступа измеряется в миллиардных долях секунды (наносекундах, нс). Типич­ное время доступа к оперативной памяти для SIMM-модулей — 50-70 нс. Для совре­менных DIMM-модулей оно составляет 7-10 нс.

 

Процессор

 

Процессор — основная микросхема компьютера, в которой и производятся все вычисления. Конструктивно процессор состоит из ячеек, похожих на ячейки опе­ративной памяти, но в этих ячейках данные могут не только храниться, но и ме­няться. Внутренние ячейки процессора называют регистрами. Важно также отме­тить, что данные, попавшие в некоторые регистры, рассматриваются не как данные, а как команды, управляющие обработкой данных в других регистрах. Среди регист­ров процессора есть и такие, которые в зависимости от своего содержания способны модифицировать исполнение команд. Таким образом, управляя засылкой данных в разные регистры процессора, можно управлять обработкой данных. На этом и основано исполнение программ.

С остальными устройствами компьютера, и в первую очередь с оперативной памятью, процессор связан несколькими группами проводников, называемых шинами. Основ­ных шин три: шина данных, адресная шина и командная шина.

Адресная шина. У процессоров Intel Pentium, (а именно они наиболее распростра­нены в персональных компьютерах) адресная шина 32-разрядная, то есть состоит из 32 параллельных линий. В зависимости от того, есть напряжение на какой-то из линий или нет, говорят, что на этой линии выставлена единица или ноль. Комби­нация из 32 нулей и единиц образует 32-разрядный адрес, указывающий на одну из ячеек оперативной памяти. К ней и подключается процессор для копирования данных из ячейки в один из своих регистров.

Шина данных. По этой шине происходит копирование данных из оперативной памяти в регистры процессора и обратно. В компьютерах, собранных на базе про­цессоров Intel Pentium, шина данных 64-разрядная, то есть состоит из 64 линий, по которым за один раз на обработку поступают сразу 8 байтов.

Шина команд. Для того чтобы процессор мог обрабатывать данные, ему нужны команды. Он должен знать, что следует сделать с теми байтами, которые хранятся в его регистрах. Эти команды поступают в процессор тоже из оперативной памяти, но не из тех областей, где хранятся массивы данных, а оттуда, где хранятся программы. Команды тоже представлены в виде байтов. Самые простые команды укла­дываются в один байт, однако, есть и такие, для которых нужно два, три и более байтов. В большинстве современных процессоров шина команд 32-разрядная (напри­мер, в процессоре Intel Pentium), хотя существуют 64-разрядные процессоры и даже 128-разрядные.

Система команд процессора. В процессе работы процессор обслуживает данные, находящиеся в его регистрах, в поле оперативной памяти, а также данные, находя­щиеся во внешних портах процессора. Часть данных он интерпретирует непосред­ственно как данные, часть данных — как адресные данные, а часть — как команды. Совокупность всех возможных команд, которые может выполнить процессор над данными, образует так называемую систему команд процессора. Процессоры, относя­щиеся к одному семейству, имеют одинаковые или близкие системы команд. Про­цессоры, относящиеся к разным семействам, различаются по системе команд и невзаимозаменяемы.

Процессоры с расширенной и сокращенной системой команд. Чем шире набор системных команд процессора, тем сложнее его архитектура, тем длиннее формаль­ная запись команды (в байтах), тем выше средняя продолжительность исполне­ния одной команды, измеренная в тактах работы процессора. Так, например, сис­тема команд процессоров Intel Pentium в настоящее время насчитывает более тысячи различных команд. Такие процессоры называют процессорами с расши­ренной системой команд — CISC-процессорами (CISC — Complex Instruction Set Computing).

В противоположность CISC-процессорам в середине 80-х годов появились процессоры архитектуры RISC с сокращенной системой команд (RISC — Reduced Instruction Set Computing). При такой архитектуре количество команд в системе намного меньше, и каждая из них выполняется намного быстрее. Таким образом, программы, состоя­щие из простейших команд, выполняются этими процессорами намного быстрее. Обо­ротная сторона сокращенного набора команд состоит в том, что сложные операции приходится эмулировать далеко не эффективной последовательностью простейших команд сокращенного набора.

В результате конкуренции между двумя подходами к архитектуре процессоров сформировалось следующее распределение сфер их применения:

 CISC-процессоры используют в универсальных вычислительных системах;

 RISC-процессоры используют в специализированных вычислительных системах или устройствах, ориентированных на выполнение единообразных операций.

Для персональных компьютеров платформы IBM PC долгое время выпускались только CISC-процессоры, к которым относятся и все процессоры семейства Intel Pentium. Однако в последнее время появились процессоры, совместимые по системе команд с процессорами х86, но имеющие гибридную архитектуру.

Совместимость процессоров. Если два процессора имеют одинаковую систему команд, то они полностью совместимы на программном уровне. Это означает, что программа, написанная для одного процессора, может исполняться и другим процес­сором. Процессоры, имеющие разные системы команд, как правило, несовмести­мы или ограниченно совместимы на программном уровне.

Группы процессоров, имеющих ограниченную совместимость, рассматривают как семейства процессоров. Так, например, все процессоры Intel Pentium относятся к так называемому семейству х86. Родоначальником этого семейства был 16-разряд­ный процессор Intel 8086, на базе которого собиралась первая модель компьютера IBM PC. Впоследствии выпускались процессоры: Intel 80286, Intel 80386, Intel 80486, Intel Pentium 60,66,75,90,100,133; несколько моделей процессоров Intel Pentium MMX, модели Intel Pentium Pro, Intel Pentium II, Intel Celeron, Intel Xeon, Intel Pentium III и другие. Все эти модели и не только они, а также многие модели про­цессоров компаний AMD и Cyrix относятся к семейству х86 и обладают совмести­мостью по принципу «сверху вниз».

Основные параметры процессоров. Основными параметрами процессоров явля­ются: разрядность, рабочая тактовая частота, коэффици­ент внутреннего умножения тактовой частоты и размер кэш-памяти.

Разрядность процессора показывает, сколько бит данных он может принять и обра­ботать в своих регистрах за один раз (за один такт). Первые процессоры х86 были 16-разрядными. Начиная с процессора 80386, они имеют 32-разрядную архитектуру. Современные процессоры семейства Intel Pentium остаются 32-разрядными, хотя и работают с 64-разрядной шиной данных (разрядность процессора определяется не разрядностью шины данных, а разрядностью командной шины).

В основе работы процессора лежит тот же тактовый принцип, что и в обычных часах. Исполнение каждой команды занимает определенное количество тактов. В настенных часах такты колебаний задает маятник; в ручных механических часах их задает пружинный маятник; в электронных часах для этого есть колебательный контур, задающий такты строго определенной частоты. В персональном компью­тере такие импульсы задает одна из микросхем, входящая в микропроцессор­ный комплект (чипсет), расположенный на материнской плате.

Чем выше частота тактов, поступающих на процессор, тем больше команд он может исполнить в еди­ницу времени, тем выше его производительность. Первые процессоры х86 могли работать с частотой не выше 4,77 МГц, а сегодня рабочие частоты про­цессоров уже превосходят 1000 миллионов тактов в секунду (1 ГГц).

Тактовые сигналы процессор получает от материнской платы, которая, в отличие от процессора, представляет собой не кристалл кремния, а большой набор проводни­ков и микросхем. По чисто физическим причинам материнская плата не может рабо­тать со столь высокими частотами, как процессор. Сегодня уже не предел 100-133 МГц. Для получения более высоких частот в процессоре происходит внут­реннее умножение частоты на коэффициент 3; 3,5; 4; 4,5; 5 и более.

Обмен данными внутри процессора происходит в несколько раз быстрее, чем обмен с другими устройствами, например, с оперативной памятью. Для того чтобы умень­шить количество обращений к оперативной памяти, внутри процессора создают буферную область — так называемую кэш-память.

КЭШ-память — это буферная, не доступная для пользователя быстродействующая па­мять, автоматически используемая компьютером для ускорения операций с информацией, хранящейся в медленнее действующих запоминающих устройствах.

Когда процессору нужны данные, он сначала обращается в кэш-память, и только если там нужных данных нет, происходит его обращение в оперативную память. Принимая блок данных из оперативной памяти, процессор заносит его одновременно и в кэш-память. «Удачные» обращения в кэш-память называют попаданиями в кэш. Процент попаданий тем выше, чем больше размер кэш-памяти, поэтому высокопроизводительные процессоры комплектуют повышенным объемом кэш-памяти.

Для ус­корения операций с основной памятью организуется регистровая КЭШ-память внутри мик­ропроцессора (КЭШ-память первого уровня) или вне микропроцессора на материнской плате (КЭШ-память второго уровня); для ускорения операций с дисковой памятью органи­зуется КЭШ-память на ячейках электронной памяти. Следует иметь в виду, что наличие КЭШ-памяти емкостью 256 Кбайт увеличивает производительность ПК примерно на 20%.