Методы очистки выбросов в атмосферу

Промышленная очистка – это очистка газа с целью последующей утилизации или возврата в производство отделенного от газа или превращенного в безвредное состояние продукта.

Промышленная очистка является необходимой стадией технологического процесса. В качестве пыле- и газоулавливающего оборудования могут использоваться циклоны, пылеосадительные камеры, фильтры, адсорберы, скрубберы и т.д.

Санитарная очистка – это очистка газа от остаточного содержания загрязняющего вещества (ЗВ), при которой обеспечивается соблюдение установленных для данного газа ПДК в воздухе населенных мест или производственных помещений.

Санитарная очистка производится при поступлении отходящих газов в атмосферный воздух. Выбор метода очистки зависит от конкретных условий производства и определяется рядом факторов: объема и температуры газов, их агрегатным состоянием, концентрацией и т.д.

Кроме очистки производится их обезвреживание, обеззараживание и дезодорация выбросов.

Очистка – это удаление (выделение, улавливание) примесей из различных сред.

Обезвреживание – это обработка примесей до безвредного для людей, животных. Растений и в целом для окружающей среды состояния.

Обеззараживание – инактивация (дезактивация) микроорганизмов различных видов, находящихся в газовоздушных выбросах, жидких и твердых средах.

Дезодорация – обработка веществ, обладающих запахом и содержащихся в воздухе, воде или твердых средах, с целью устранения или снижения интенсивности запахов.

Очистка газовоздушных выбросов производится либо абсорбцией, либо адсорбцией.

Абсорбция – это процесс поглощения газов или паров из газовоздушных смесей жидкими поглотителями (абсорбентами). Процесс абсорбции является избирательным и обратимым. Избирательность абсорбции заключается в поглощении конкретного ЗВ из смеси абсорбентом определенного типа. Обратимость абсорбции заключается в том, что поглощенное вещество может быть снова извлечено, а абсорбент – использован в процессе очистки.

Т.е., схема абсорбционного процесса состоит в следующем: газовая смесь поступает в абсорбер, где поглощается ЗВ. Очищенный воздух удаляется, а поглотитель поступает в десорбер, где извлекается ЗВ, а абсорбент после охлаждения снова идет в абсорбер.

Выбор абсорбента зависит от извлекаемого вещества. Например, для удаления СО используют медно-аммиачные растворы; от SO2 – аммиачные, известковые и марганцевые; от Н2S – карбонаты натрия, калия или аммиак.

Адсорбция – это процесс поглощения примесей из газовоздушной смеси при помощи твердых веществ (адсорбентов).

В качестве адсорбентов применяют в основном активные угли, силикагели, цеолиты. Активные угли изготавливают из каменного угля, торфа, древесины и т.д., по внешнему виду – зерна или порошок. Силикагели – это минеральные адсорбенты с регулярной структурой пор, по внешнему виду – стекловидные или матовые зерна. Силикагели способны поглощать полярные вещества, например, метанол. Разновидностью силикагелей являются алюмогели, представляющие собой активный оксид алюминия. Цеолиты – это синтетические алюмосиликатные кристаллические вещества, обладающие большой поглотительной способностью. Они поглощают сероводород, сероуглерод, аммиак, этан, этилен, метан, оксид углерода и др.

Если концентрация примесей в газовоздушных выбросах незначительна, то улавливание экономически и технически нецелесообразно. В этих случаях используются различные способы обезвреживания.

К основным способам обезвреживания относятся:

Каталитические методы – основаны на каталитических реакциях, в результате которых вредные примеси превращаются либо в безвредные соединения, либо же в соединения, легко удаляющиеся из среды. В качестве катализаторов используются платина, палладий, никель, хром, медь, железо. Каталитические методы не получили широкого распространения: дорого, малый срок службы катализаторов, чувствительность к пыли, недопустимость перепадов температуры.

Термический метод – окисление органических веществ кислородом воздуха при высокой температуре до нетоксичных соединений. Этот метод является очень энергоемким, т.к. дожиг происходит при температуре 800-1200 0 С. Но очистные установки имеют небольшие габариты, просты в обслуживании, имеют высокую эффективность, что определяет широкое их распространение.

Термокаталитический метод – нейтрализация вредных веществ в установках сжигания при наличии катализаторов (инициаторов окисления), что позволяет снизить температуру дожига до 300-400 0С.

Для дезодорации и обеззараживания газовоздушных выбросов применяются все вышеперечисленные методы термического и термокаталитического дожигания, абсорбции, адсорбции и их различные сочетания.

Дезодорация осуществляется чаще всего в том случае, когда концентрация ЗВ ниже ПДК (нормативно чистая смесь), но имеет запах.

Абсорбционно-окислительные методы основаны на поглощении газов водой или другими поглотителями с применением окислителей (перманганата калия, оксида водорода, озона и др.). Эти методы очистки широко распространены на предприятиях химической промышленности. К недостаткам методов относятся: высокая стоимость окислителя, необходимость доочистки для удаления оксида марганца. Из всех абсорбционно-окислительных методов самым эффективным является озонирование.

К преимуществам озонирования относятся: высокая окислительная способность по отношению к спиртам, нефтепродуктам, фенолам и другим сложным соединениям; доступность сырья, технологическая гибкость очистки.

Каталитические методы очистки газов основаны на реакциях в присутствии твердых катализаторов, т. е. на закономерностях гетерогенного катализа. В результате каталитических реакций примеси, находящиеся в газе, превращаются в другие соединения, т. е. в отличие от рассмотренных методов примеси не извлекаются из газа, а трансформируются в безвредные соединения, присутствий: которых допустимо в выхлопном газе, либо в соединения, легко удаляемые из газового потока. Если образовавшиеся вещества подлежат удалению, то требуются дополнительные операции (например, извлечение жидкими или твердыми сорбентами).

Трудно провести границу между адсорбционными и каталитическими методами газоочистки, так как такие традиционные адсорбенты, как активированный уголь, цеолиты, служат активными катализаторами для многих химических реакций. Очистку газов на адсорбентах–катализаторах называют адсорбционно-каталитической. Этот прием очистки выхлопных газов весьма перспективен ввиду высокой эффективности очистки от примесей и возможности очищать большие объемы газов, содержащих малые доли примесей (например, 0,1—0,2 в объемных долях SO2). Но методы утилизации соединений, полученных при катализе, иные, чем в адсорбционных процессах.

 

Озонные методы.

 

Озонные методы применяют для обезвреживания дымовых газов от SO2 (NOx) и дезодорации газовых выбросов промышленных предприятий. Введение озона ускоряет реакции окисление NO до NO2 и SO2 до SO3. После образования NO2 и SO3 в дымовые газы вводят аммиак и выделяют смесь образовавшихся комплексных удобрений (сульфата и нитрата аммония). Время контакта газа с озоном, необходимое для очистки от SO2 (80-90%) и NOx (70-80%) составляет 0,4 – 0,9 сек. Энергозатраты на очистку газов озонным методом оценивают в 4-4,5% от эквивалентной мощности энергоблока, что является, по-видимому, основной причиной, сдерживающей промышленное применение данного метода.

Применение озона для дезодорации газовых выбросов основано на окислительном разложении дурно пахнущих веществ. В одной группе методов озон вводят непосредственно в очищаемые газы, в другой газы промывают предварительно озонированной водой. Применяют также последующее пропускание озонированного газа через слой активированного угля или подачу его на катализатор. При вводе озона и последующем пропускании газа через катализатор температура превращения таких веществ как амины, ацетальдегид, сероводород и др.понижается до 60-80 °C. В качестве катализатора используют как Pt/Al2O3, так и оксиды меди, кобальта, железа на носителе. Основное применение озонные методы дезодорации находят при очистке газов, которые выделяются при переработке сырья животного происхождения на мясо- (жиро-)комбинатах и в быту.

 

Биохимические методы.

 

Биохимические методы очистки основаны на способности микроорганизмов разрушать и преобразовывать различные соединения. Разложение веществ происходит под действием ферментов, вырабатываемых микроорганизмами в среде очищаемых газов. При частом изменении состава газа микроорганизмы не успевают адаптироваться для выработки новых ферментов, и степень разрушения вредных примесей становится неполной. Поэтому биохимические системы более всего пригодны для очистки газов постоянного состава.

Биохимическую газоочистку проводят либо в биофильтрах, либо в биоскрубберах. В биофильтрах очищаемый газ пропускают через слой насадки, орошаемый водой, которая создает влажность, достаточную для поддержания жизнедеятельности микроорганизмов. Поверхность насадки покрыта биологически активной биопленкой (БП) из микроорганизмов.

Микроорганизмы БП в процессе своей жизнедеятельности поглощают и разрушают содержащиеся в газовой среде вещества, в результате чего происходит рост их массы. Эффективность очистки в значительной мере определяется массопереносом из газовой фазы в БП и равномерным распределением газа в слое насадки. Такого рода фильтры используют, например, для дезодорации воздуха. В этом случае очищаемый газовый поток фильтруется в условиях прямотока с орошаемой жидкостью, содержащей питательные вещества. После фильтра жидкость поступает в отстойники и далее вновь подается на орошение.

В настоящее время биофильтры используют для очистки отходящих газов от аммиака, фенола, крезола, формальдегида, органических растворителей покрасочных и сушильных линий, сероводорода, метилмеркаптана и других сероорганических соединений.

К недостаткам биохимических методов следует отнести:

  • низкую скорость биохимических реакций, что увеличивает габариты оборудования;
  • специфичность (высокую избирательность) штаммов микроорганизмов, что затрудняет переработку многокомпонентных смесей;
  • трудоемкость переработки смесей переменного состава.

Плазмохимические методы.

 

Плазмохимический метод основан на пропускании через высоковольтный разряд воздушной смеси с вредными примесями. Используют, как правило, озонаторы на основе барьерных, коронных или скользящих разрядов, либо импульсные высокочастотные разряды на электрофильтрах. Проходящий низкотемпературную плазму воздух с примесями подвергается бомбардировке электронами и ионами. В результате в газовой среде образуется атомарный кислород, озон, гидроксильные группы, возбуждённые молекулы и атомы, которые и участвуют в плазмохимических реакциях с вредными примесями. Основные направления по применению данного метода идут по удалению SO2, NOx и органических соединений. Использование аммиака, при нейтрализации SO2 и NOx, дает на выходе после реактора порошкообразные удобрения (NH4)2SO4 и NH4NH3, которые фильтруются.

Недостатком данного метода являются:

· недостаточно полное разложение вредных веществ до воды и углекислого газа, в случае окисления органических компонентов, при приемлимых энергиях разряда

· наличие остаточного озона, который необходимо разлагать термически либо каталитически

· существенная зависимость от концентрации пыли при использовании озонаторов с применением барьерного разряда.