Распределение ионов внутри и вне возбудимых клеток, мМ/л

 

Ионы Мышечная клетка Нервная клетка
  снаружи внутри снаружи внутри
Na+ K+ CI- 2,5 9,2 3-4 40-100

 

Градиенты концентраций калия и хлора примерно уравновешивают друг друга. Поэтому проницаемость мембраны для этих ионов хотя и ограничена, но относительно высока. Проницаемость натриевых каналов в покое ничтожно мала. Более того, Na+ постоянно «выкачивается» за пределы нейрона с помощью энергозависимых механизмов против высо­кого электрохимического градиента. Таким образом, потенциал покоя представляет собой не что иное, как готовый к использованию источник накопленной энергии, необходимой для генерации сигнала (потенциала действия). Если возбудимая мембрана деполяризуется примерно на 15 мВ, электровозбудимые натриевые каналы открываются, прони- цаемость их для ионов резко возрастает, Na+ устремляется в клетку, разница потенци­алов по обе стороны мембраны падает, деполяризация мембраны еще бо­лее усиливается, формируется потенциал действия и возбуждение пере­дается по нервному (или мышечному) волокну. Затем в течение около 0,8 мс потенциал на мембране возвращается к исходному уровню, глав­ным образом за счет выхода ионов калия из клетки. Усиление проницае­мости для К+ необходимо для полной реполяризации мембраны и восста­новления исходного потенциала покоя. При этом восстанавливается и исходная проницаемость мембраны для натрия.

Тетродотоксин и сакситоксин полностью блокируют проникновение ионов Na+ по ионным каналам возбудимых мембран внутрь клеток. При этом становится невозможным формирование потенциала действия возбу­димых мембран - нарушается проведение нервных импульсов по нейро­нам, сокращение миоцитов. В эксперименте показано, что вещества дейст­вуют только при экстрацеллюлярной аппликации. В соответствии с расчета­ми одна молекула токсинов полностью блокирует один ионный канал. По­лагают, что взаимодействие токсикантов с белковыми молекулами, форми­рующими ионный канал, осуществляется за счет группы гуанидина, содер­жащейся в структуре как сакси-, так и тетродотоксина. Взаимодействие ток­синов с белками ионных каналов обратимо. In vitro яды могут быть удаленыс поверхности возбудимой мембраны простым отмыванием биопрепарата.

Исчерпывающих данных о причинах развивающихся эффектов нет. Так, до конца не определено, возбудимые мембраны каких структур, нервных клеток (ЦНС, периферии) или миоцитов, являются более чувствите­льными к действию токсинов. Так, по мнению одних исследователей, остановка дыхания является следствием действия токсинов на нейроны дыхательного центра, другие полагают, что основным является нарушение проведения нервного импульса по дыхательным нервам или возбудимости дыхательных мышц. Вероятно, более справедливо последнее предположе­ние, поскольку электровозбудимость диафрагмы блокируется меньшими дозами токсикантов, чем проведение нервного импульса по диафрагмаль­ному нерву. Кроме того, в опытах на анестезированных кошках показано, что при введении вещества в смертельной дозе проведение нервных импу­льсов по диафрагмальному нерву не прекращается даже тогда, когда элект­ромиограмма диафрагмальной мышцы уже безмолвствует. Развивающееся снижение артериального давления также связывают как с блокадой проведения нервных импульсов по симпатическим нер­вным волокнам, так и с параличом гладкомышечных клеток сосудистой стенки. Сердечная мышца вовлекается в процесс при введении токсикан­та лабораторным животным в дозе 0,007 мг/кг.

Нарушение чувствительности (парестезии с последующим онемени­ем) - следствие поражения возбудимых мембран чувствительных ней­poнов.

Многие центральные эффекты, такие как атаксия, головокружение, нарушение речи и т. д., могут быть связаны с действием вещества непо­средственно на нейроны ЦНС.