Биогеохимические циклы алюминия, железа и марганца

Алюминий - один из трех наиболее распространенных элементов земной коры. Железо по распространенности занимает второе место после алюминия среди металлов и четвертое среди всех элементов земной коры. Содержание марганца в земной коре значительно ниже -0,1%.

Железо и марганец активно вовлекаются в биологический круговорот, так как входят в состав многих ферментов. Железо участвует в образовании хлорофилла и входит в состав гемоглобина. Марганец принимает участие в окислительно-восстановительных реакций – дыхании, фотосинтезе и усвоении азота. Участие алюминия в биологическом круговороте ограничено. Хотя в земной коре это самый распространенный металл, биофильность его очень низкая.

Геохимичекие циклы железа и марганца в решающей степени зависят от условий увлажнения, реакции среды, степени аэрации почвы, условий разложения органического вещества. Миграция алюминия в меньшей степени зависит от окислительно-восстановительных условий, так как он обладает постоянной валентностью. В то же время, амфотерность этого элемента обуславливает сильную зависимость его миграции от кислотно-основных условий среды: в сильно кислой среде он ведет себя как катион, а в сильно щелочной – как анион. Наиболее высока подвижность этого металла в сильно кислых водах районов активного вулканизма и зон окисления сульфидных месторождений. Под защитой органических коллоидов алюминий активно мигрирует в болотных водах. Тем не менее, интенсивность миграции алюминия в целом значительно ниже, чем у железа и марганца, а его минералы более устойчивы. Слабая подвижность алюминия определяет остаточное (за счет выноса более подвижных элементов) накопление его гидроксидов в коре выветривания влажных тропиков и образование бокситов.

Известно, что соединения алюминия, железа и марганца в почвах с промывным режимом мигрируют в вертикальном направлении и образуют иллювиальные горизонты, обогащенные полуторными окислами и марганцем.

Соединения железа и марганца активно мигрируют с боковым внутрипочвенным стоком, образуя скопления конкреций в болотах. Луговых и глеевых почвах, мелководных озерах и лагунах. Это свидетельствует о способности этих соединений мигрировать на весьма большие расстояния. Осаждение железа в аккумулятивных ландшафтах происходит в виде карбонатов железа, окислов разной степени гидратированности, а также фосфатов и гуматов. В степях и пустынях в условиях щелочной среды эти элементы мигрируют слабо.

Миграция железа и марганца возможна и в составе живого вещества. После отмирания организмов и их минерализации в почве часть этих элементов закрепляется в почве, другая же часть поступает в природные воды. Возвращаясь в почву, они начинают новый биогеохимический цикл.

В результате процессов выветривания железо в огромных количествах выносится в океаны. Вынос железа реками в океан происходит в разнообразных формах – в виде грубых взвесей обломков минералов и пород, содержащих железо в кристаллической решетке (силикатов, в т.ч. глинистых минералов), в виде коллоидов, содержащих железо в абсорбированном состоянии, в виде гидратов, гуматов и органических содинений закисного железа.

Недостаток железа приводит у растений к заболеванию, известному под названием хлороз. Однако непосредственное накопление железа в значительных количествах характерно лишь для немногих организмов. В этом отношении уникальны железобактерии, окисляющие двухвалентное железо, в результате чего образуется лимонит. Диатомовые водоросли способны усваивать железо из нерастворимых коллоидов. Железо потребляет и зоопланктон с красной кровью (мелкие рачки). При гибели этих организмов и растворения детритовых частей определенное количество железа также переходит в раствор в виде гидратов и других форм. В качестве особых случае концентрации железа организмами можно отметить наличие магнетита и гетита в в зубах некоторых современных гастропод.

Биогеохимический цикл железа и марганца существенно нарушается техногенными процессами, причем, несмотря на значительно более высокое содержание в земной коре железа, технофильность этих элементов примерно равна. В техносфере алюминий играет исключительно важную роль, но технофильность его почти в 100 раз ниже, чем у железа.