Очистка дымовых газов от оксидов азота.

Ко оксидов азота определяется режимами и орг-цией топочного процесса. В принципе NОх м. удалять из дым. газов, однако это напр-е не получило промыш-го развития, т.к. при удалении NОх из дым. газов следует учитывать ряд трудностей: 1. Более низкие Ко оксидов азота в дым. газах по сравнению с SО2., 2. высокая химич. устойчивость, особенно NО.

3 группы методов очистки:

1. Окислительные методы, основанные на окислении оксида азота NО в диоксид NО2 с последующим поглощением разл-ми поглотителями.

2. Восстановительные – основанные на вос-ии оксида азота NО до N2 и О2 с применением катализаторов.

3. Сорбционные методы – основанные на поглощении оксидов разл-ми сорбентами, например, цеалитом(глина), торфом, водными растворами щелочей.

В энергетике применимы восстановительные методы. Очистка этими методами осложняется след-ми причинами: наличие в дым. газах золы и оксидов серы отравляет и загр-ет кат-р, у кат-ра д.б. темпер-ра приблиз-но 450о, т.е. более высокая, чем за з/ул.

Аммиак является единственным восстановителем избир-го дей-я, способным восстановить оксиды азота. Кат-р явл-ся пентооксид ванадия, нанесенный на активный гамма-оксид алюминия. Этот кат-р устойчив к сернистым соед-ям. Очистка осущ-ся след-м образом: в поток дым. газов между экономайзером и воздухопод-лем вводится кол-р (перфорир-я труба) ч/з отверстия которой выходит ам. На расстоянии 0,5-1,5 м от нее расположена кассета с катализатором V2О5. Степень вос-я аммиаком 71-95%. После очистки с прод-ми сгорания выбрасывается аммиак, что повышает токсичность продуктов сгорания и явл-ся недостатком метода (СКВ).

Второй метод из восстан-х – СНКВ (селективно-не каталитический метод). Аммиак вдувается в топочную камеру при темпер-рах 950-1000 градС. Этот метод позволяет избавиться от кат-ра. Степень восстановления зависит от темпер-ры, соотн-ния аммиак-оксид азота и времени реакции. Важнейшей тенденцией явл-ся совмещение этих 2-х методов, тогда процесс идет по след-щей схеме: подача аммиака в топку приводит к частичному воссан-ию оксидов азота и повышению содержания аммиака в дым газах. Путем добавления кат-ра на пов-ти в-хоподогр-ля за счет аммиака, прсут-го в дым. газ., на кат-ре обеспечивается доп. восст-ние оксидов азота.

Для системы СНКВ не нужны знач-е затраты, но эффек-ть знач-но ниже, чем СКВ. СНКВ м. снизить выбросы в 2 р., а при СКВ – в 5-10раз., но при реализации СНКВ возникает ряд трудностей: 1.невозможно обеспечить оптим-ю темпер-ру дым.газов по всему сечению газохода, 2.недостаточно протяженность реакционной зоны, обеспечив-я необходимое время протекания реакции, 3.невозможно равномерно расп-ть аммиак по всему газоходу, чтобы обеспечить оптим-ое соотн-е аммиак-оксид азота.

Ближайшая задача – совершенствование режимно-конструктивных мероприятий, снижающих выбросы NОх.

 

9. Режимно-конструктивные мероприятия по снижению NOx.

- Режимные мероприятия по снижению NОх

1). Сжигание с малым избытком коэф-та избытка воздуха с 1.1 – 1.3 до 1.03 – 1.05 образование NОх снижается на 25-30 %, но приводит к увеличению выбросов концерагенных веществ. Поэтому этот способ возможен только при условии усовершенствования горелок и устранения неорганизованных присосов в топку.

2) Рециркуляция продуктов сгорания или дым. газов. При подводе продуктов сгорания в зону горения снижается температура горения и уменьшается концентрация реагирующих веществ. Наиболее эффективно подача газов в зону активного горения, поэтому целесообразно вводить продукты сгорания в воздухопроводы перед горелками или подавать их в топку через отдельные каналы горелок. Рециркуляция воздействует только на термические оксиды азота. Степень рец-ции 20-30%, что снижает NОх на 30-60%. Большая степень рец-ции ведет к обрыву и погасанию факела. Орг-ция рец-ции дорога, т.к. требуются дутьевой вентилятор и газоходы рец-ции.

3) Впрыск влаги в зону горения. Впрыск влаги в виде воды или вод. пара подавляет в основном терм-ого оксида азота и значительно меньше влияет на выход топливных NОх . Этот метод исп-ся в виде природоохранного мероприятия только при сжигании газа и мазута. Впрыск влаги снижает температуру в зоне горения и разбавляет конц-ию в реагентах. Первый фактор - определяющий, поэтому впрыск производят непосредственно в ядро горения. К недостаткам метода относят снижение КПД котла на 0,5-1,3 % за счет увеличения потерь с уходящими газами и сернокислотной и кислородной коррозии поверхности нагрева.

4) Снижение темп-ры горячего воздуха. Это вызывает снижение темп-ры в зоне горения, следовательно снижение образования термических оксидов азота. Метод может использоваться при сжигании газов в ряде случаев мазута. Существенное снижение темп-ры горячего воздуха приводит к увел-ию темп-ры уходящих газов и снижению КПД котла. Эти меры рекомендуются как кратковременные при неблагоприятных метеоусловиях, т.к. при малых затратах можно обеспечить снижение NОх на 10-30%.

5) Нестехиометрическое сжигание – это способ организации в топочной камере раздельных восстановительной с α < 1 и окислительной c α > 1-1,2 зон горения при сохранении традиционных коэф-ов избытка воздуха при выходе из топки. При этом в восстановительной зоне подавляется образование термических и топливных NОх из-за недостатка О2 , а в окислительной сдерживается образованием терм-их оксидов азота из-за более низкой темп-ры горения при больших α. На практике метод реализуется путем разбаланса топливо - воздух в горелках и по ярусам горелок.

- Конструктивные мероприятия по снижению NОх

К ним относят мероприятия для реализации которых требуется изменение конструкции топки, горелочных устройств или изменение компоновки горелок в топочной камере. К ним относятся:

а) усовершенствованные горелочные устройства

б) топочные устройства с пониженным образованием оксидов азота

в) двухсветный экран

г) двухступенчатое сжигание

Горелки с пониженным выбросом токсичных пр-тов сгорания можно разделить на 4 типа: 1 – улучшенного смешения, 2 – с рец-цией пр-тов сгорания, 3 – со ступенчатым сжиганием т-ва, 4 – многофак-го типа.

Улучшенное смешение дает короткий факел и сокращается время пребывания т-ва в высокоt°-ной зоне.