Глава 6. ПОРЯДОК ЧЕРЕЗ ФЛУКТУАЦИИ

Флуктуации и химия.От детерминистических, обратимых процессов физика движется к стохастическим и необратимым процессам. Это изменение перспективы оказывает сильнейшее влияние на химию. Химические процессы, в отличие от траекторий классической динамики, соответствуют необратимым процессам. Химические реакции приводят к производству энтропии. Между тем классическая химия продолжает опираться на детерминистическое описание химической эволюции. Основным «оружием» теоретиков в химической кинетике являются дифференциальные уравнения, которым удовлетворяют концентрации веществ, участвующих в реакции. Зная эти концентрации в некоторый начальный момент времени (а также соответствующие граничные условия, если речь идет о явлениях, зависящих от пространственных переменных, например о диффузии), мы можем вычислить их в последующие моменты времени. Интересно отметить, что такой детерминистический взгляд на химию перестает соответствовать действительности, стоит лишь перейти к сильно неравновесным процессам.

Когда система, эволюционируя, достигает точки бифуркации, детерминистическое описание становится непригодным. Флуктуация вынуждает систему выбрать ту ветвь, по которой будет происходить дальнейшая эволюция системы. Переход через бифуркацию — такой же случайный процесс, как бросание монеты. Возможно только статистическое описание. Такая ситуация в корне меняет традиционное представление об отношении между микроскопическим уровнем, описываемым в терминах атомов и молекул, и макроскопическим уровнем, описываемым в терминах таких глобальных переменных, как концентрация. Во многих случаях флуктуации вносят лишь малые поправки.

В качестве примера рассмотрим газ, N молекул которого заключены в сосуд объемом V. Разделим этот объем на две равные части. Чему равно число молекул X в одной из них? Здесь X — «случайная» переменная, и можно ожидать, что ее значение достаточно близко к N/2. Основная теорема теории вероятностей (так называемый закон больших чисел) позволяет оценить ошибку, вносимую флуктуациями. По существу, закон больших чисел утверждает, что при измерении X мы можем ожидать значение порядка . При большом N ошибка, вносимая флуктуациями, может быть также большой, но относительная ошибка, вносимая флуктуациями, стремится к нулю при больших N. Как только система становится достаточно большой, закон больших чисел позволяет отличать средние значения от флуктуации (последние становятся пренебрежимо малыми).

В случае неравновесных процессов встречается прямо противоположная ситуация. Флуктуации определяют глобальный исход эволюции системы. Вместо того чтобы оставаться малыми поправками к средним значениям, флуктуации существенно изменяют средние значения.

Некоторым читателям, должно быть, известны соотношения неопределенности Гейзенберга, выражающие несколько неожиданным образом вероятностный аспект квантовой теории. Возможность одновременного измерения координат и импульса в квантовой теории отпадает, тем самым нарушается и классический детерминизм. Считалось, однако, что это никак не сказывается на описании таких макроскопических объектов, как живые системы. Но роль флуктуаций в сильно неравновесных системах показывает, что это не так. Случайность остается весьма существенной и на макроскопическом уровне.

Флуктуации и корреляции.Закон больших чисел позволяет нам вычислять корреляции между числом молекул X в двух точках пространства, находящихся на заданном расстоянии друг от друга. Как показывают вычисления, в равновесных условиях такая корреляция не существует. Вероятность одновременно найти молекулу X в точке r и молекулу X' в точке r' (отличной от точки r) равна произведению вероятности найти молекулу X в точке r и вероятности найти молекулу X' в точке r' (мы рассматриваем случай, когда расстояние между точками r и r' велико по сравнению с радиусом межмолекулярного взаимодействия). Один из наиболее неожиданных результатов недавних исследований состоял в том, что в неравновесной области ситуация резко изменяется. Появляются дальнодействующие корреляции. Частицы, находящиеся на макроскопических расстояниях друг от друга, перестают быть независимыми. «Отзвуки» локальных событий разносятся по всей системе.

Дальнодействующие корреляции организуют систему еще до того, как происходит макроскопическая бифуркация. Мы снова возвращаемся к одной из главных идей нашей книги: к неравновесности как источнику порядка. В данном случае ситуация особенно ясна. В равновесном состоянии молекулы ведут себя независимо: каждая из них игнорирует остальные.

Активность материи связана с неравновесными условиями, порождаемыми самой материей.

Усиление флуктуации.Как показывают теоретические исследования и численное моделирование, критические размеры ядра возрастают с эффективностью механизмов диффузии, связывающих между собой все области системы. Иначе говоря, чем быстрее передается сигнал по «каналам связи» внутри системы, тем выше процент безрезультатных флуктуации и, следовательно, тем устойчивее система. Этот аспект проблемы критического размера означает, что в подобных ситуациях «внешний мир», т.е. все, что окружает флуктуирующую область, всегда стремится погасить флуктуации. Затухнут ли флуктуации или усилятся, зависит от эффективности «канала связи» между флуктуирующей областью и внешним миром. Таким образом, критические размеры определяются конкуренцией между «интегративной силой» системы и химическими механизмами, приводящими к усилению флуктуации. Описанная нами модель применима, в частности, к результатам, полученным в последнее время in vitro[7] при экспериментальных исследованиях зарождения раковых опухолей. В этих исследованиях отдельная раковая клетка рассматривается как флуктуация, способная спонтанно и непрестанно появляться и размножаться, посредством репликации. Возникнув, раковая клетка сталкивается с популяцией цитотоксических клеток и либо погибает, либо выживает. В зависимости от значений различных параметров, характеризующих процессы репликации и гибели раковых клеток, мы можем предсказывать либо регресс, либо разрастание опухоли.

Вопрос о пределах сложности системы поднимался довольно часто. Действительно, чем сложнее система, тем более многочисленны типы флуктуаций, угрожающих ее устойчивости. Позволительно, однако, спросить, как же в таком случае существуют такие сложные системы, какими является экологическая или социальная структура человеческого общества? Каким образом им удается избежать перманентного хаоса? Частичным ответом на подобные вопросы может быть ссылка на стабилизирующее влияние связи между частями систем, процессов диффузии. В сложных системах, где отдельные виды растений, животных и индивиды вступают между собой в многочисленные и разнообразные взаимодействия, связь между различными частями системы не может не быть достаточно эффективной. Между устойчивостью, обеспечиваемой связью, и неустойчивостью из-за флуктуации имеется конкуренция. От исхода этой конкуренции зависит порог устойчивости.

Структурная устойчивость.В нашей книге отношению между микроскопическим и макроскопическим уделяется немало внимания. Одной из наиболее важных проблем в эволюционной теории является возникающая в итоге обратная связь между макроскопическими структурами и микроскопическими событиями: макроскопические структуры, возникая из микроскопических событий, должны были бы в свою очередь приводить к изменениям в микроскопических механизмах. Как ни странно, но в настоящее время наиболее понятные случаи относятся к ситуациям, возникающим в человеческом обществе. Когда мы прокладываем дорогу или строим мост, мы можем предсказать, как это скажется на поведении окрестного населения, а оно в свою очередь определяет изменения в характере и способах связи внутри региона. Такие взаимосвязанные процессы порождают очень сложные ситуации, и это обстоятельство необходимо сознавать, приступая к их моделированию.

Логистическая эволюция. Понятие структурной устойчивости находит широкое применение в социальных проблемах. Следует, однако, подчеркнуть, что всякий раз речь идет о сильном упрощении реальной ситуации, описываемой в терминах конкуренции между процессами саморепликации в среде с ограниченными пищевыми ресурсами. В экологии классическое уравнение, описывающее такую проблему, называется логистическим уравнением. Оно описывает, как эволюционирует популяция из N особей с учетом рождаемости, смертности и количества ресурсов, доступных популяции. Логистическое уравнение можно представить в виде dN/dt = rN(K–N) – mN, где r и m — характерные постоянные рождаемости и смертности, К — «несущая способность» окружающей среды. При любом начальном значении N система со временем выходит на стационарное значение N = K – m/r, зависящее от разности между несущей способностью среды и отношением постоянных смертности и рождаемости. При достижении этого стационарного значения наступает насыщение: в каждый момент времени рождается столько индивидов, сколько их погибает.

Рис. 3. Эволюция популяции N как функция времени t, описываемая логистической кривой. Стационарное состояние N = 0 неустойчиво, а стационарное состояние N = K – m/r устойчиво относительно флуктуации величины N

Мэй обратил внимание на одну замечательную особенность таких уравнений: несмотря на их простоту, они допускают необычайно много решений. При значениях параметра 0 < r < 2 наблюдается монотонное приближение к равновесию. При значениях параметра 2 < r < 2,444 возникает предельный цикл: наблюдается периодический режим с двухлетним периодом. При еще больших значениях параметра r возникают четырех-, восьмилетние и т.д. циклы, пока периодические режимы не переходят (при значениях r больше 2,57) в режим, который может быть назван только хаотическим. Мы имеем здесь дело с переходом к хаосу через серию бифуркаций удвоения периода. Возникает ли такой хаос в природе? Как показывают последние исследования, параметры, характеризующие реальные популяции в природе, не позволяют им достигать хаотической области.

Моделирование сложности. Несмотря на свою простоту, наша модель довольно точно передает некоторые особенности эволюции сложных систем. В частности, она проливает свет на природу трудностей «управления» развитием, зависящим от большого числа взаимодействующих элементов. Каждое отдельное действие или локальное вмешательство в систему обретает коллективный аспект, который может повлечь за собой совершенно неожиданные глобальные изменения. В настоящее время мы еще мало знаем о наиболее вероятной реакции системы на то или иное изменение. Очень часто отклик системы на возмущение оказывается противоположным тому, что подсказывает нам наша интуиция. Наше состояние обманутых ожиданий в этой ситуации хорошо отражает введенный в Массачусетском технологическом институте термин контринтуитивный.[8]

Например, программа ликвидации трущоб вместо того, чтобы улучшить, еще более ухудшает ситуацию. Новые здания, построенные на месте снесенных, привлекают в район большее число людей, но если их занятость не обеспечивается, то они продолжают оставаться бедными, а их жилища становятся еще более перенаселенными. Мы приучены мыслить в терминах линейной причинности, но теперь нуждаемся в новых «средствах мышления».

Взять хотя бы различие, проводимое экологами между К-стратегиями и r-стратегиями (К и r – параметры, входящие в логистическое уравнение). Типичной для популяции жертв эволюцией является увеличение рождаемости r, а для популяции хищников – совершенствование способов ловли жертв, т.е. увеличение коэффициента К. Но повышение К в рамках логистической модели влечет за собой последствия, выходящие за круг явлений, описываемых логистическими уравнениями. K-стратегия подразумевает, что индивид все более повышает свою способность обучаться на опыте и хранить накопленную информацию в памяти. Иначе говоря, индивиды становятся все более сложными и со все более долгим периодом созревания и обучения. В свою очередь это означает, что индивиды становятся все более «ценными», представляющими более крупные вложения «биологического капитала» и уязвимыми на протяжении более продолжительного периода. Развитие «социальных» и «семейных» связей является, таким образом, логическим следствием К-стратегии.

К моделированию сложных явлений следует относиться с осторожностью: в сложных системах дефиниция самих сущностей и взаимодействия между ними в процессе эволюции могут претерпевать изменения. Не только каждое состояние системы, но и само определение ситемы в том виде, в каком ее описывает модель, обычно нестабильно.

Открытый мир.Традиционная интерпретация биологической и социальной эволюции весьма неудачно использует понятия и методы, заимствованные из физики, – неудачно потому, что они применимы в весьма узкой области физики и аналогия между ними и социальными или экономическими явлениями лишена всякого основания. Первый пример тому — парадигма оптимизации. И управление человеческим обществом, и действие селективных «воздействий» на систему направлены на оптимизацию тех или иных аспектов поведения или способов связи, но было бы опрометчиво видеть в оптимизации ключ к пониманию того, как выживают популяции и индивиды. Те, кто так думает, рискуют впасть в ошибку, принимая причины за следствия, и наоборот. Модели оптимизации игнорируют и возможность радикальных преобразований (т.е. преобразований, меняющих самую постановку проблемы и тем самым характер решения, которое требуется найти), и инерциальные связи, которые, в конечном счете, могут вынудить систему перейти в режим функционирования, ведущий к ее гибели.

Подобно доктринам, аналогичным «невидимой направляющей руке» Адама Смита, или другим определениям прогресса в терминах критериев максимизации или минимизации, модели оптимизации рисуют утешительную картину природы как всемогущего и рационального калькулятора, а также строго упорядоченной истории, свидетельствующей о всеобщем неукоснительном прогрессе. Для того чтобы восстановить и инерцию, и возможность неожиданных событий, т.е. восстановить открытый характер истории, необходимо признать ее фундаментальную неопределенность.