ЗАКЛЮЧЕНИЕ. С земли на небо: новые чары природы

Открытая наука. Наука, несомненно, подразумевает активное воздействие на природу, но вместе с тем она является попыткой понять природу, глубже проникнуть в вопросы, которые задавало не одно поколение людей. Один из этих вопросов звучит как лейтмотив (почти как наваждение), на страницах этой книги, как, впрочем, и в истории естествознания и философии. Речь идет об отношении бытия и становления, неизменности и изменения. В начале нашей книги мы упоминали о вопросах, над которыми размышляли еще философы-досократики. Не накладывается ли изменение, порождающее все вещи и обрекающее их на гибель, извне на некую инертную материю? Не является ли изменение результатом внутренней независимой активности материи? Необходима ли внешняя побуждающая сила или становление внутренне присуще материи? Естествознание XVII в. встало в оппозицию к биологической модели спонтанной и автономной организации живых существ. Но тогда же естествознанию пришлось столкнуться с другой фундаментальной альтернативой. Является ли природа внутренне случайной? Не является ли упорядоченное поведение лишь преходящим результатом случайных столкновений атомов и их неустойчивых соединений?

Одним из главных источников неотразимой привлекательности современной науки было ощущение, что она открывала вечные законы, таившиеся в глубине нескончаемых преобразований природы, и тем навсегда изгнала время и становление. Открытие порядка в природе рождало чувство интеллектуальной уверенности. Мы искали общие, всеобъемлющие схемы, которые допускали бы описание на языке вечных законов, но обнаружили время, события, частицы, претерпевающие различные превращения. Занимаясь поиском симметрии, мы с удивлением обнаружили на всех уровнях — от элементарных частиц до биологии и экологии — процессы, сопровождающиеся нарушением симметрии. Мы описали в нашей книге столкновение между динамикой с присущей ей симметрией во времени и термодинамикой, для которой характерна односторонняя направленность времени. На наших глазах возникает новое единство: необратимость есть источник порядка на всех уровнях. Необратимость есть тот механизм, который создает порядок из хаоса.

Время и времена. На протяжении более трех столетий в физике господствовало мнение о том, что время по существу представляет собой геометрический параметр, позволяющий описывать последовательность динамических состояний.

Энтропийный барьер. Мы описали второе начало как принцип отбора: каждому начальному условию соответствует некоторая «информация». Допустимыми считаются все начальные условия, для которых эта информация конечна. Но для обращения времени необходима бесконечная информация; мы не можем создавать ситуации, которые переносили бы нас в прошлое! Чтобы предотвратить путешествия в прошлое, мы возвели энтропийный барьер. Нельзя не отметить интересную аналогию между энтропийным барьером и представлением о скорости света как о максимальной скорости передачи сигналов. Такой барьер необходим для придания смысла причинности. Энтропийный барьер также необходим для того, чтобы придать смысл передаче сигналов. Необратимость и передача сигналов тесно связаны между собой. Норберт Винер убедительно показал, к каким ужасным последствиям привело бы существование двух направлений времени. Именно энтропийный барьер гарантирует единственность направления времени, невозможность изменить ход времени с одного направления на противоположное.

Только объединение динамики и термодинамики с помощью введения нового принципа отбора придает второму началу фундаментальное значение эволюционной парадигмы естественных наук. Применяя естественнонаучные понятия к социологии или экономике, необходимо соблюдать осторожность.

Актеры и зрители.Мерло-Понти утверждал, что «философские» открытия естествознания, концептуальные преобразования его основ нередко происходят в результате негативных открытий, служащих толчком к пересмотру сложившихся взглядов и отправным пунктом для перехода к противоположной точке зрения. Доказательства невозможности, или несуществования (будь то в теории относительности, квантовой механике или термодинамике), показали, что природу невозможно описывать «извне», с позиций зрителя. Описание природы— живой диалог, коммуникация, и она подчинена ограничениям, свидетельствующим о том, что мы — макроскопические существа, погруженные в реальный физический мир.

Ситуацию, какой она представляется нам сегодня, можно условно изобразить в виде диаграммы (рис. 4). Мы начинаем с наблюдателя, измеряющего координаты и импульсы и исследующего, как они изменяются во времени. В ходе своих измерений он совершает открытие: узнает о существовании неустойчивых систем и других явлений, связанных с внутренней случайностью и внутренней необратимостью. Но от внутренней необратимости и энтропии мы переходим к диссипативиым структурам в сильно неравновесных системах, что позволяет нам понять ориентированную во времени деятельность наблюдателя. Не существует научной деятельности, которая не была бы ориентированной во времени. Подготовка эксперимента требует проведения различия между «до» и «после». Распознать обратимое движение мы можем только потому, что нам известно о необратимости. Из нашей диаграммы видно, что, описав полный круг, мы вернулись в исходную точку и теперь видим себя как неотъемлемую часть того мира, который мы описываем. Для того чтобы макроскопический мир был миром обитаемым, в котором живут «наблюдатели», т. е. живым миром, Вселенная должна находиться в сильно неравновесном состоянии.

Рис. 4. Наблюдатель и природа

Вихрь в бурлящей природе.Чарлз С. Пирс: «Вы все слышали о диссипации энергии. Обнаружено, что при любых трансформациях энергии часть ее превращается в тепло, а тепло всегда стремится выровнять температуру. Под воздействием собственных необходимых законов энергия мира иссякает, мир движется к своей смерти, когда повсюду перестанут действовать силы, а тепло и температура распределяться равномерно... Но хотя ни одна сила не может противостоять этой тенденции, случайность может и будет препятствовать ей. Сила в конечном счете диссипативна, случайность в конечном счете концентративна. Диссипация энергии по непреложным законам природы в силу тех же законов сопровождается обстоятельствами, все более и более благоприятными для случайной концентрации энергии. Неизбежно наступит такой момент, когда две тенденции уравновесят друг друга. Именно в таком состоянии, несомненно, находится ныне весь мир».

За пределами тавтологии. Мир классической науки был миром, в котором могли происходить только события, выводимые из мгновенного состояния системы. Классическая наука отрицала становление и многообразие природы. Объекты классической динамики замкнуты в себе. Они ничего не узнают извне. Каждая точка системы в любой момент времени знает все, что ей необходимо знать, а именно распределение масс в пространстве и их скорости. Каждое состояние содержит всю истину о всех других состояниях, совместимых с наложенными на систему связями; каждое может быть использовано для предсказания других состояний, каково бы ни было их относительное расположение на оси времени.

Коренное изменение по взглядах современной науки заключается в переходе к темпоральности и множественности. И на макроскопическом, и на микроскопическом уровнях естественные науки более не используют концепцию объективной реальности, из которой следовала необходимость отказа от новизны и многообразия во имя вечных и неизменных универсальных законов. Естественные науки избавились от слепой веры в рациональное как нечто замкнутое и отказались от идеала достижимости окончательного знания, казавшегося почти достигнутым. Ныне естественные науки открыты для всего неожиданного, которое больше не рассматривается как результат несовершенства знания или недостаточного контроля.

Состояние внутреннего мира.Идеалом классической науки была «прозрачная» картина физической Вселенной. В каждом случае предполагалась возможность указать причину и ее следствие. Но когда возникает необходимость в стохастическом описании, причинно-следственная часть усложняется. Мы не можем говорить более о причинности в каждом отдельном эксперименте. Имеет смысл говорить лишь о статистической причинности.

Обновление природы.Идеи, которым мы уделили в книге достаточно много внимания, — идеи о нестабильности флуктуации — начинают проникать в социальные науки. Ныне мы знаем, что человеческое общество представляет собой необычайно сложную систему, способную претерпевать огромное число бифуркаций, что подтверждается множеством культур, сложившихся на протяжении сравнительно короткого периода в истории человечества. Мы знаем, что столь сложные системы обладают высокой чувствительностью по отношению к флуктуациям. Это вселяет в нас одновременно и надежду, и тревогу: надежду на то, что даже малые флуктуации могут усиливаться и изменять всю их структуру (это означает, в частности, что индивидуальная активность вовсе не обречена на бессмысленность); тревогу — потому, что наш мир, по-видимому, навсегда лишился гарантий стабильных, непреходящих законов.

Мы живем в опасном и неопределенном мире, внушающем не чувство слепой уверенности, а лишь то же чувство умеренной надежды, которое некоторые талмудические тексты приписывают богу Книги Бытия: Двадцать шесть попыток предшествовали сотворению мира, и все они окончились неудачей. Мир человека возник из хаоса обломков, оставшихся от прежних попыток. Он слишком хрупок и рискует снова обратиться в ничто. «Будем надеяться, что на этот раз получилось»,— воскликнул бог, сотворив мир, и эта надежда сопутствовала всей последующей истории мира и человечества, подчеркивая с самого начала этой истории, что та отмечена печатью неустранимой неопределенности.

Послесловие. ЕСТЕСТВОЗНАНИЕ И РАЗВИТИЕ: ДИАЛОГ С ПРОШЛЫМ, НАСТОЯЩИМ И БУДУЩИМ
В. И. Аршинов, Ю. Л. Климонтович, Ю. В. Сачков

Настоящее послесловие ставит своей целью поделиться некоторыми мыслями и соображениями, возникшими после прочтения книги, с тем чтобы подключить читателя к самостоятельному размышлению над рассматриваемыми в книге проблемами, к активному диалогу с ее авторами.

Процессы в физических, химических и биологических системах подразделяются на два класса. К первому классу относятся процессы в замкнутых системах. Они ведут к установлению равновесного состояния, которое при определенных условиях отвечает максимально возможной степени неупорядоченности. Такое состояние мы называем физическим хаосом. Современные представления о равновесном состоянии восходят к замечательным работам Больцмана и Гиббса, которые показали, что энтропия, введенная в термодинамику Клаузиусом, служит одной из важных характеристик статистической теории — мерой неупорядоченности, или хаотичности, состояния системы.

Ко второму классу можно отнести процессы в открытых системах, в ходе которых из физического хаоса рождаются структуры — диссипативные структуры. Возникновение диссипативных структур в ходе временной эволюции в открытых системах через последовательность все более упорядоченных диссипативных структур характерно для процессов самоорганизации. Проблема самоорганизации в различных системах не является, разумеется, новой. Различным аспектам этой проблемы посвящено много выдающихся работ. Особое место среди них занимают работы Чарлза Дарвина о естественном отборе в процессе эволюции.

Одно время бытовало мнение, что существует явное противоречие между теорией Дарвина и вторым законом термодинамики. Действительно, по Дарвину, в процессе биологического развития происходит усложнение структур и степень упорядоченности возрастает. Согласно же второму закону термодинамики, в любой замкнутой системе в процессе эволюции степень хаотичности (энтропия) возрастает. Это кажущееся противоречие отпало с осознанием того факта, что существуют два принципиально различных (указанные выше) процесса эволюции: процессы в замкнутых системах ведут к тепловому равновесию (физическому хаосу, в нашей терминологии), а процессы в открытых системах могут быть процессами самоорганизации.

По представлениям Платона и его учеников, хаос (если говорить современным языком) есть такое состояние системы, которое остается по мере устранения возможностей проявления ее свойств. Понятие «структура» также является чрезвычайно общим. Структура есть некоторый вид организации и связи элементов системы.

На вопрос «Что такое турбулентность?» ответить не просто. Многим представляется почти очевидным, что переход от ламинарного течения к турбулентному есть переход от упорядоченного движения к хаотическому. «Долгое время турбулентность отождествлялась с, хаосом или шумом. Сегодня мы знаем, что это не так. Хотя в макроскопическом масштабе турбулентное течение кажется совершенно беспорядочным, или хаотическим, в микроскопическом масштабе оно высокоорганизованно. Множество пространственных и временных масштабов, на которых разыгрывается турбулентность, соответствует когерентному поведению миллионов и миллионов молекул. С этой точки зрения переход от ламинарного течения к турбулентности является процессом самоорганизации. Часть энергии системы, которая в ламинарном течении находилась в тепловом движении молекул, переходит в макроскопическое организованное движение.

Необходима теория, позволяющая количественно оценивать степень упорядоченности различных состояний в открытых системах, т.е. степень упорядоченности структур, возникающих из хаоса. Она, разумеется, должна базироваться на современной статистической теории неравновесных процессов.

Вопрос о выборе (определении) управляющих параметров в теории самоорганизации является одним из наиболее существенных и вместе с тем трудных. При наличии нескольких параметров порядка возможны различные пути самоорганизации – различные «сценарии» возникновения порядка из хаоса. При этом возникает возможность оптимального управления. В качестве одной из характеристик степени упорядоченности можно использовать (при определенных дополнительных условиях) энтропию Больцмана – Гиббса.

Возможность использования энтропии Больцмана – Гиббса для количественной характеристики степени упорядоченности при процессах самоорганизации в открытых системах не представляется очевидной. В одном случае в изолированной системе происходит эволюция к равновесному состоянию. При этом энтропия системы монотонно возрастает и остается неизменной при достижении равновесного состояния. В другом случае рассматривается совокупность стационарных состояний, отвечающих различным значениям управляющего параметра. Начало отсчета управляющего параметра может быть, в частности, выбрано таким образом, что его нулевому значению будет отвечать «состояние равновесия».


[1] Аберрация — отклонение от нормы; ошибка, нарушение, погрешность.

[2] Витали́зм (от лат. vitalis — «жизненный») — учение о наличии в живых организмах нематериальной сверхъестественной силы, управляющей жизненными явлениями — «жизненной силы». Теория витализма постулирует, что процессы в биологических организмах зависят от этой силы, и не могут быть объяснены с точки зрения физики, химии или биохимии.

[3] Ignoramus et ignorabimus (лат. «не знаем и не узнаем») — ставшее крылатым выражение из доклада Эмиля Дюбуа-Реймона «О пределах познания природы». Смысл выражения заключается в том, что по мнению Дюбуа-Реймона, мы никогда не перейдём положенной человеческому духу границы познания природы.

[4] Логарифм в этом выражении свидетельствует о том, что энтропия— величина аддитивная S1+2 = S1 + S2, тогда как число комплексов Р мультипликативно P1+2 = P1 * P2.

[5] Циклическая АМФ (цАМФ) – вещество, встречающееся во многих биохимических процессах, например в процессах гормональной регуляции.

[6] Брюсселятор – нелинейная модель, придуманная Пригожиным; названа в честь города Брюссель, где он работал.

[7] In vitro (лат. «в стекле») — это технология выполнения экспериментов, когда опыты проводятся «в пробирке» — вне живого организма. Этот термин противопоставляется термину in vivo — эксперимент на живом организме (на человеке).

[8] Джамшид Гараедаги в книге Системное мышление. Как управлять хаосом и сложными процессами говорит о контринтуитивности, как об одном из основных системных принципов (наряду с открытостью, целеустремленностью, многомерностью и эмерджентностью).