А) Походження та застосування.

Скло. Загальна характеристика.

а) Походження та застосування;б)Історична довідка; в).Отримання; г)Види скла;д).Характеристики скла; е).Фізико-механічні властивості скла; ж).Електро-фізичні властивості; з).Гігієнічні характеристики; к).Застосування.

2.Ситали: а)Походження назви; б)Отриманн; . в).Властивості ситалів; г)Використання.

3.3. Відповісти на питання до самоконтролю:

1.Які властивості скла Вам відомі, наведіть приклади.

2. Наведіть приклади застосування скла.

3. На які види класифікується скло?

4.Дайте характеристику різним видам скла.

5. Які властивості ситалів Вам відомі, наведіть приклади.

6.Наведіть приклади використання ситалів.

4. Рекомендована література.

Хомченко И.Г. Общая химия: Учебник для техникумов. М.: Химия, 1987, с.176-181.

Опорний конспект з теми винесеної для самостійного вивчення

Тема: Скло.Ситали.Загальна характеристика.Класифікація.

Мета: вивчити властивості скла і ситалів; навчитися розрізняти види скла за їх класифікацією; вивчити застосування скла і ситалів у різних галузях діяльності людини.

План:

Скло. Загальна характеристика.

а) Походження та застосування;б)Історична довідка; в).Отримання; г)Види скла;д).Характеристики скла; е).Фізико-механічні властивості скла; ж).Електро-фізичні властивості; з).Гігієнічні характеристики; к).Застосування.

2.Ситали: а)Походження назви; б)Отриманн;. в).Властивості ситалів; г)Використання.

Скло. Загальна характеристика.

Скло (неорганічне скло) — тверда аморфна речовина, прозора, в тій чи іншій частині оптичного діапазону (в залежності від складу), отримана під час застигання розплаву, що має склотвірні компоненти.

Склотвірний компонент — речовина (оксид, сульфід, селенід, телурид чи фторид елементу), яка в процесі застигання розплавленої маси утворює скло.

Під склом розуміють сплави різних силікатів з надлишком діоксиду силіцію. Розплавлене скло не відразу твердне при охолодженні, а поступово збільшує свою в'язкість, аж поки не перетвориться в однорідну тверду речовину. Скло при твердінні не кристалізується, тому воно не має різко вираженої точки плавлення. На відміну від кристалічних матеріалів скло, при нагріванні у відповідному температурному інтервалі розм'якшується поступово, переходячи з твердого крихкого стану у тягучий високов'язкий і далі — у текучий стан — скломасу.

А) Походження та застосування.

У природі скло зустрічається у складі вулканічних порід, які швидко охололи з рідкої магми при взаємодії з холодним повітрям чи водою. Іноді скло зустрічається у складі метеоритів, розплавлених при проходженні атмосфери.

Коли встановили ідентичність будови, складу і властивостей звичайного силікатного скла низці мінералів, останні стали кваліфікуватись як різновиди його природні аналоги, отримуючи назви у відповідності до умов формування: вулканічне скло (пемза, обсидіани, пехштейн та ін.), скло метеоритного походження — тектит (молдавіти, лівіти та ін.).

Скло, що використовується у промислових масштабах — матеріал штучного походження, якому властиві такі основні характеристики, як прозорість, твердість, хімічна стійкість, термостійкість. Крім того, скло має властивості, які обумовлюються його прозорістю, електричними та термомеханічними параметрами. Завдяки цьому скло широко використовують майже у всіх галузях техніки, медицині, у наукових дослідженнях та у побуті.

Б)Історична довідка.

За загально складеною історичною думкою технології виготовлення скла вперше почали використовувати близько 2500-3000 р.р. до н.е. у Межиріччі та Єгипті, оскільки глазуровані склом фаянсові прикраси, вік яких нараховує п'ять тисяч років, знаходили саме там. Археологія Межиріччя, особливо періоду Стародавніх Шумеру та Аккаду, схиляє дослідників до того, що менш старовинним зразком виробництва скла слід вважати пам'ятку, знайдену в Межиріччі в районі Ашнунаку — циліндричну печатку з прозорого скла, що датується періодом династій Аккадської держави, тобто вік її — близько чотирьох з половиною тисяч років. Намистина зеленуватого кольору діаметром близько 9 мм, що зберігається у Єгипетському музеї у Берліні, вважається одним з найдавніших зразків скла. Знайдена вона була єгиптологом Фліндерсом Пітрі біля Фів, за деякими допущеннями їй п'ять з половиною тисяч років. Вчений Н. Качалов стверджує, що на території Старовавілонського царства археологи постійно знаходять посудинки для пахощів місцевого походження, виконані у тій же техніці, що і єгипетські. Учений стверджує — є всі підстави вважати, «що в Єгипті й у країнах Передньої Азії джерела склоробства... відділяються від наших днів проміжком приблизно у шість тисяч років».

Близько 1500 років до н.е. у Єгипті почали виготовляти перші предмети домашнього вжитку. Це в основному були чаші, кухонне начиння та пляшки. Центрами виробництва скляних виробів були столиці Єгипту, спочатку Фіви, а потім Александрія. З Єгипту склоробство проникло на територію сучасної Італії (I ст. до н.е.). Рим у I ст. н.е. стає значним центром виробництва скла. Тут засновано декілька скляних майстерень і залучено значну кількість єгипетських склоробів. Масштаби виробництва були настільки великі, що римських склоробів у 220 р. було обкладено податком, а їхні майстерні зведені на одну з головних вулиць Риму. З Риму склоробство поширюється в римські провінції (Британія, Галлія та ін), а також у III-IV ст. на північне узбережжя Чорного моря і у Київську Русь.

Першим великим технологічним проривом у скляному виробництві можна вважати технологію видування скла, яке виникло у 100 році на території сучасних Палестини та Сирії. Ця технологія полягала у захопленні розплавленого скла на кінці трубки, у яку людина повинна була дути для надання форми скляному виробу. Основне призначення цих виробів стосувалось домашнього побутового використання (пляшки, вази).

Наступним за значенням після Риму центром скляного виробництва у IX ст. стає Венеція, найсильніша морська держава Середземного моря. Падіння Східної Римської імперії (1204 р.) і переселення константинопольських склоробів до Венеції дало сильний поштовх виробництву венеціанського скла починаючи з XI століття і аж до XVI-XVII ст. Завдяки надзвичайній якості своєї продукції Венеція стає на той час європейською столицею з виготовлення художнього скла. Саме виробництво з 1291 р. було зосереджене на острові Мурано для зменшення ризику ворожого нападу та захисту виробничих секретів. Вже тоді скловари Венеції використовували склобій.

До XIV століття виробництво скла з'явилось у Нормандії та Лотарингії. У цей час в Нормандії виникла технологія виготовлення плаского скла для вікон. Вона полягала у видуванні скляної кулі, яку за допомогою надрізу розгортали у диск. Наступне досягнення у розвитку технологій скла у Франції зроблено Кольбертом. Саме він заснував у 1665 році «Королівську мануфактуру скла». Перший завод було відкрито у містечку Сен-Гобен у департаменті Ена, що на півночі Франції.

У XVIII ст. виробництво скла поступово перейшло від індивідуального до промислового масштабу. Уже тоді окремі фабрики виробляли понад мільйон пляшок на рік. У числі найважливіших винаходів того часу слід назвати регенеративну скловарну піч Сіменса (1870). На відміну від горшкових печей ванні печі здатні переробляти великі кількості скломаси. Це створило передумови механізації виробництва скла.

Приблизно у 1880 році у Клода Бушера, склодува з міста Коньяк виникла ідея використовувати стиснуте повітря для надання склу кінцевої форми, що відразу привело до зростання продуктивності праці на 150%. Промислова революція суттєво вплинула на процес виготовлення скла:

печі розігрівались за допомогою вугілля замість дерева;

розпочалось застосування повністю автоматичних ліній;

формування здійснювалось стиснутим повітрям та з використанням металевих форм.

Наступним етапом розвитку у виробництві листового скла був метод машинної витяжки скла, розроблений Эмілем Фурко у 1902 році. При цьому способі скло витягується зі скловарної печі через прокатні вальці у вигляді безперервної стрічки назовні, надходячи в шахту охолодження, у верхній частині якої воно ріжеться на окремі аркуші. Машинний спосіб виробництва скла був удосконалений надалі в першій половині двадцятого століття. З найсучасніших способів варто відзначити так званий метод Ліббея-Оуенса та Пітсбурзький метод.

Останнім етапом у розвитку технологій виробництва листового скла було патентування у 1959 році англійською компанією «Пілкінгтон» (англ. Pilkington) флоат-методу. При цьому процесі, який можна прирівняти до відкриття, скло надходить із плавильної печі в горизонтальній площині у вигляді плоскої стрічки через ванну з розплавленим оловом на подальше охолодження й відпал.

В).Отримання.

При виробництві скла використовують:

головні або склоутворюючі матеріали, до яких відносяться кварцовий пісок, сода, вапняк, доломіт, поташ, бура, каолін, пегматит, свинцевий сурик тощо;

допоміжні матеріали, до яких належать сульфат натрію, селітра, триоксид миш'яку і сурми (для просвітлення скла), фториди, перекис марганцю, селен та інші речовини (для знебарвлювання скла), оксиди хрому, міді, кобальту, заліза (барвники).

За видом основних склоутворюючих матеріалів розрізняють такі класи скла: елементарні, оксидні, галогенідні, халькогенідні, металеві, сульфатні, нітратні, карбонатні та ін.

скло елементарне — здатні утворювати лише невелике число елементів: сірка, селен, миш'як, фосфор, вуглець. Склоподібні сірку і селен вдається отримати при швидкому переохолодженні розплаву; миш'як — методом сублімації у вакуумі; фосфор — при нагріванні до 250 °C під тиском понад 100 МПа; вуглець — в результаті тривалого піролізу органічних смол. Промислове застосування знаходить скловуглець, що має унікальні властивості, котрі перевершують властивості кристалічних модифікацій вуглецю: він здатний залишатися в твердому стані аж до 3700 °C, має низьку густину (близько 1500 кг/м3, має високу механічну міцність, електропровідність та хімічну стійкість.

скло оксидне (наприклад, скло силікатне та його різновиди), являють собою великий клас сполук. Найлегше утворюють скло оксиди SiO2, СеO2, B2O3, P2O5, As2O3. Велика група оксидів — ТеO2, TiO2, SeO2 WO3 MoO3, Bi2O3, А12O3, Ga2O3, V2O5 — утворює скло при сплавленні з іншими оксидами або сумішами оксидів. Наприклад, легко утворюється скло в системах СаО—Аl2O3, СаО—А12O3—В2O3, Р2O5—V2O2, MemOn—P2O5—V2O5, де MemOn — різні модифікуючі оксиди.

скло галогенідне (фторберилатне), яке отримують на основі склоутворюючого ВеF2 компонента. Багатокомпонентні склади фторберилатних видів скла містять також фториди алюмінію, кальцію, магнію, стронцію, барію. Фторберилатние скло знаходить практичне застосування завдяки високій стійкості до дії жорстких випромінювань, включаючи рентгенівські промені, і до таких агресивних середовищ, як фтор і фтористий водень;

скло халькогенідне, яке отримують в безкисневих системах типу As—X, Ge—As—X, Ge—Sb—X, Ge—P—X (де X: S, Se, Te) та ін. Халькогенідне скло має високу прозорість в інфрачервоній області спектру, має електронну провідність, проявляє внутрішній фотоефект.

Види скла, отримані на основі нітратних, сульфатних і карбонатних сполук представляють науковий інтерес, але практичного застосування поки знайшли.

Кожен із склоутворюючих оксидів може утворювати скло в комбінації з проміжними або модифікуючими оксидами. Скло отримує назву за видом склоутворюючого оксиду: силікатне, боратне, фосфатне, германатне і т.д. Практичне значення мають види скла простих і складних складів, що належать до силікатної, боратної, боросилікатної, фосфатної, германатної, алюмінатної, молібдатної, вольфраматної та інших систем.

Виробництво скла полягає у підготовці (просіюванні, сушінні, змішуванні) сировинних матеріалів, плавленні їх у скловарних печах з одержанням скломаси, формуванні з неї (пресуванням, прокаткою, видуванням та іншими способами) скляних виробів, відпалі їх (при нагріванні до температури 450...600 °C і поступовому охолодженні), щоб запобігти розтріскуванню, а також у механічній, хімічній, термічній або термохімічній обробці. Скло буває прозорим і непрозорим, забарвленим і безбарвним.

Г)Види скла.

В залежності від практичного використання скляних виробів змінюється хімічний склад скла, форма, розміри, та спосіб їхнього виготовлення. Сучасна скляна промисловість виготовляє найрізноманітніші вироби — промислове та побутове листове скло, скляні труби і ізолятори, медичне та парфумерне скло, тарне та сортове скло, піноскло, скловолокно, ситали та інше.

Тарне скло

Тарне скло займає досить велику частку від загального об‘єму продукції, що виготовляють скляні заводи. Це відбувається тому, що тарне скло використовується для фасування, зберігання та транспортування різноманітних рідких пастоподібних та твердих продуктів.

Перевагами скляної тари, що обумовлюють широке її використання у різноманітних галузях промисловості та в побуті є: гігієнічність, прозорість, можливість виготовлення тари різноманітних розмірів та форми, можливість герметичного закривання та багаторазового використання, доступна ціна.

Кришталь

Кришталь — художнє скло, що називають так за схожість із гірським кришталем — один із найдорожчих і найгарніших різновидів. Із нього виготовляють різноманітний посуд, вази, люстри, що можуть посперечатися своєю красою із найвитонченішими витворами мистецтва.

Оптичне скло використовують для виготовлення лінз, призм, кювет і багато чого іншого.

Хіміко-лабораторне скло має високу хімічну й температурну стійкість, що дає змогу використовувати його під час наукових, часом небезпечних дослідів.

Медичне скло використовується для зберігання й упаковки лікарських препаратів, ін'єкційних і бактеріологічних розчинів, а також предметів догляду за хворими.

Скляний жаростійкий посуд (борне скло) визнаний одним із найкращих для приготування страв. У ньому можна готувати супи, каші, запіканки, тушкувати овочі, м'ясо, заварювати чай, каву звичайно ж, дотримуючись певних правил користування.

Д).Характеристики скла.

Аморфна структура скла SiO2.

Речовини в твердому стані при звичайних температурі і тиску можуть мати кристалічну або аморфну будову. У природі найпоширенішими є кристалічні тверді речовини, для структури яких характерний геометрично строгий порядок розташування частинок (атомів, іонів) в тривимірному просторі. Кристалічний стан є стабільним при звичайних умовах і характеризується найменшою внутрішньою енергією. Тверді кристалічні речовини мають чіткі геометричні форми, певні температури плавлення, у більшості випадків проявляють анізотропію властивостей.

Склоподібний стан речовини є аморфним різновидом твердого стану. Склоподібний стан є метастабільним, тобто характеризується надлишком внутрішньої енергії. Просторове розташування частинок речовини, що знаходиться в склоподібному стані, є неврегульованим, що підтверджується результатами рентгеноструктурних досліджень.

Скло може бути отримане шляхом охолодження розплавів без кристалізації шляхом переохолодження розплавів зі швидкістю, достатньою для запобігання кристалізації. Неорганічні розплави, що здатні утворити склофази, переходять до склоподібного стану при температурах нижчих за температуру склування Tg (при температурах вищих за Tg аморфні речовини перебувають у розплавленому стані).

Скло може бути отримане також шляхом аморфізації кристалічних речовин, наприклад бомбардуванням пучком іонів, або при осадженні парів на охолоджувані підкладки.

Е).Фізико-механічні властивості скла.

Густина скла залежить від його хімічного складу. Вважається, що мінімальну густину має кварцове скло — 2203 кг/м3. Найменшу густину має боросилікатне скло, і, навпаки, густина скла, що містять оксиди свинцю, вісмуту, танталу сягає 7500 кг/м3. Збільшення густини при введення модифікаторів викликано заповненням порожнин просторового метало-силікатного каркасу, в результаті чого збільшується величина маси одиниці об'єму. Густина звичайних натрій-кальцій-силікатних видів скла, в тому числі віконних, коливається в межах 2500…2600 кг/м3. При підвищенні температури з кімнатної до 1300 °C густина більшості видів скла зменшується на 6…12 %, тобто в середньому на кожні 100 °C густина зменшується на 15 кг/м3. Табличні значення густини скла знаходяться у діапазоні від 2400 до 2800 кг/м3. Значення густини загартованих і відпалених зразків скла розрізняються на 0,08…0,09 кг/м3 одиниць другого знака після коми. В загартованому склі зафіксовано структуру розплаву, котра має більший об'єм у порівнянні із структурою відпаленого скла.

Пружність скла також залежить від його хімічного складу і модуль Юнга для силікатного скла може змінюватися від 48 ГПа до 83 ГПа, модуль зсуву — 22…32 ГПа, коефіцієнт Пуассона — 0,17…0,3. Наприклад, у кварцового прозорого скла модуль Юнга складає 71,4 ГПа. Залежність модулів пружності від хімічного складу скла є неоднозначною. При збільшенні у складі скла вмісту оксидів лужних металів модулі пружності зменшуються, так як міцність зв'язків МеO значно менша від міцності зв'язку SiО. Уведення у склад до 12 % CaO чи B2O3, а також оксидів лужноземельних елементів Al2O3 та PbO сприяє зростанню модуля Юнга. Модуль пружності скла після гартування зростає на 8…10 %.

Міцність. Вироби зі скла здатні витримувати набагато вищі напруження на стиск, ніж на розтяг. Для звичайного скла границя міцності на стиск становить у залежності від складу від 500 до 2500 МПа (у віконного скла близько 1000 МПа), на згин — 0,03…0,12 МПа. Шляхом загартовування скла вдається підвищити його міцність у 3 — 4 рази. Також значно підвищує міцність скла обробка його поверхні хімічними реагентами з метою видалення дефектів поверхні (найдрібніших тріщин, подряпин і т. д.).

Твердість скла, як і багато інших властивостей, залежать від виду та вмісту домішок. За шкалою Мооса твердість скла становить 6-7 од., що знаходиться між твердістю апатиту і кварцу. Найтвердішими є кварцове скло, малолужне боросилікатне скло із вмістом Al2O3 до 10…12 % та алюмосилікатне скло з високим вмістом Al2O3. Зі збільшенням вмісту лужних оксидів твердість скла зменшується. Найм'якішими буде свинцеве скло.

Крихкість. В діапазоні відносно низьких температур (нижче температури плавлення) скло руйнується від механічного впливу без помітної пластичної деформації і, тому відноситься до ідеально крихких матеріалів (поряд з алмазом та кварцом). Дана властивість може бути охарактеризована питомою ударною в'язкістю. Як і у попередніх випадках, зміна хімічного складу дозволяє регулювати і цю властивість: наприклад, введення брому підвищує міцність на удар майже удвічі. Силікатні види скла мають ударну в'язкість в межах 1,5…2,0 кН/м, чим у 100 разів поступаються залізу.

Теплопровідність скла досить незначна і становить 0,0017…0,032 кал/(см·с·град) або від 0,711 до 13,39 Вт /(м·К). У віконного скла ця цифра дорівнює 0,0023 кал/(см·с·град) чи 0,96 Вт /(м·К).

Ж).Електро-фізичні властивості.

Залежно від складу і від температури навколишнього середовища скло можуть бути ізолятором (діелектриком), напівпровідником і провідником струму.

Електропровідність

Велика група оксидних видів скла (силікатні, боратні, фосфатні та ін.) належить до класу ізоляторів, що обумовлено високими значеннями ширини забороненої зони. При кімнатній температурі питома об'ємна електропровідність силікатного скла лежить в межах 10-7...10-15 Ом-1 м-1.

Встановлено, що носіями струму в оксидних видах скла є катіони лужних або лужноземельних металів. Низька електропровідність оксидного скла обумовлена ​​малою рухливістю катіонів. Підвищення температури супроводжується зниженням в'язкості, збільшенням рухливості носіїв струму, в результаті чого електропровідність зростає на декілька порядків.

Кварцове скло є майже ідеальним ізолятором серед силікатних видів скла. Його електропровідність при кімнатній температурі становить 10-18 Ом-1·м-1, а при 800 °C 10-4 Ом-1·м-1.

В результаті адсорбції вологи, а також продуктів хімічної взаємодії поверхні з вологою повітря на поверхні виробів створюється електропровідний шар. У багатьох випадках цей процес є небажаним, оскільки негативно позначається на ізоляційних властивостях скла. Підвищення вмісту в склі оксидів лужних металів прискорює реакцію гідролізу поверхневого шару скла. Введення у склад скла оксидів BaO, MgO, ZnO, PbO до 10...15 % замість SiO2 або спеціальна обробка поверхні парою кремнійорганічних сполук сприяє зниженню поверхневої провідності.

Діелектричні властивості скла.

Силікатні види скла при температурах нижчих за температуру склування (Tg) відносяться до класу діелектриків.

Діелектрична проникність скла залежить від його складу, змінюючись для силікатного скла від 3,8 (для кварцового) до 16,2 (для скла з високим вмістом оксидів важких металів) і мало залежить від температури аж до 400...500 °С.

З підвищенням частоти поля діелектрична проникність зменшується. Найінтенсивніше цей ефект спостерігається в області низьких частот від 0 до 103 Гц, в той час як в інтервалі 103...1010 Гц це зменшення (при нормальній температурі) не перевищує 10%. З підвищенням температури діелектричні втрати інтенсивно збільшуються і, як наслідок, діелектрик розігрівається.

Електрична міцність

Електрична міцність скла при тепловому пробої зменшується зі збільшенням товщини зразка внаслідок погіршення відводу тепла від внутрішніх шарів виробу.

 

У змінному електричному полі розігрівання діелектрика здійснюється інтенсивніше (додаються діелектричні втрати), в результаті чого електрична міцність скла в змінному полі нижча, ніж у постійному. Тепловий механізм пробою характерний як для діелектриків, що мають при звичайних умовах досить високе значення електропровідності. Електрична міцність скла при тепловому пробої становить 104...105 кВ·м-1.

З).Гігієнічні характеристики.

Скло не виділяє шкідливих речовин, не має запаху, забезпечує тривале зберігання продуктів, добре миється та дезінфікується, легко утилізується, має добрі декоративні можливості. Крім того скляна промисловість забезпечена найбагатшими сировинними ресурсами.

Природні властивості скла та його аморфність наділяють цей матеріал крихкістю, але в той же самий час відсутність кристалічної ґратки надає унікальну можливість використати скло в медицині.

Скло надзвичайно стійке до різноманітних реагентів (за винятком плавикової кислоти), а також до дій атмосферних явищ. Дуже високі санітарно-гігієнічні властивості скла дають можливість використовувати його не тільки для приготування їжі, але й для довготермінового зберігання продуктів — соління, маринади, компоти, варення, джеми, прянощі тощо. Закорковані у скляних пляшках вина зберігаються багато років, навіть століття, не втрачаючи своїх властивостей. Парфуми ж виготовляють виключно у скляному посуді, бо скло нейтральне хімічно й енергетично, що дає можливість зберегти повний букет ароматів, закладений виробником, а нам — скористатися вишуканим парфумом без будь-яких сторонніх домішок. До речі, знайдені археологами пахощі в скляних пляшечках також зберегли свої властивості, не зважаючи на тисячоліття проведені здебільшого під землею. Скляний посуд використовується багаторазово, адже він добре миється, його можна мити як рідкими, так і абразивними мийними засобами, обробляти парою, кип'ятити (дотримуючись обережності) для повного винищення бактерій і будь-яких небажаних запахів.

Загальна технологія виготовлення скла

За минулі тисячоліття методи виготовлення скла майже не змінилися, найраніші зразки практично нічим не відрізняються від сучасного, усім відомого скла для виготовлення пляшок (винятком є тільки сучасне скло із заданими властивостями). У природному стані воно існує як мінерал обсидіан — вулканічне скло. Величезна кількість модифікацій скла дає змогу найрізноманітнішого утилітарного використання, обумовленого його складом і хіміко-фізичними властивостями.

Звичайне віконне скло і скляний посуд являють собою сплав оксиду натрію, оксиду кальцію і діоксиду силіцію. Його приблизний склад можна виразити формулою: Na2O • CaO • 6SiO2. Вихідними матеріалами для виготовлення скла слугує білий кварцовий пісок SiO2, сода Na2CO3 і вапняк або крейда CaCO3. Суміш цих речовин у відповідних співвідношеннях сплавляють у спеціальних печах. Спочатку при 700—800°С внаслідок взаємодії карбонатів натрію і кальцію з діоксидом силіцію утворюються силікати натрію і кальцію:

Na2CO3 + SiO2 = Na2SiO3 + CO2 ↑

CaCO3 + SiO2 = CaSiO3 + CO2 ↑

При 1200—1300 °C силікати натрію і кальцію з надлишком діоксиду силіцію утворюють сплав

Na2SiO3 + CaSiO3 + 4SiO2 = Na2O•CaO•6SiO2

Скляну масу в розплавленому стані витримують до повного видалення газів. Разом з тим проводять знебарвлення скла додаванням незначних кількостей діоксиду марганцю MnO2. Звичайне скло буває забарвлене в зелений колір домішками оксидів заліза які потрапляють разом з піском. Діоксид марганцю надає склу рожевого забарвлення, а зелений і рожевий кольори в сукупності дають білий колір. Після цього скляну масу охолоджують до певного ступеня в'язкості і виготовляють різні вироби.

К).Застосування.

Зі скла виробляють волокно, вату, тканини тощо. Ці матеріали відзначаються, значною механічною міцністю, негорючістю, кислотостійкістю і високими тепло- і електроізоляційними властивостями. Вони мають широке застосування в різних галузях техніки і будівельній справі.

У зв'язку з його згаданими електро-фізичними властивостями, скло застосовують для виготовлення низько- та високовольтних ізоляторів, балонів і ніжок освітлювальних та електронних ламп, газорозрядних приладів, тонко- та товстостінних газонепроникних і вакуум-щільних оболонок, різних електровакуумних приладів, рентгенівських трубок, компонентів електричних ланцюгів, що мають специфічні електро-фізичні властивості.

Ситали.

Сита́ли (склокера́міка) — це склокристалічні матеріали, які складаються з однієї або декількох кристалічних фаз, рівномірно розподілених у скловидній фазі. Вони займають проміжне положення між звичайним склом і керамікою. Ситали містять велику кількість дрібних (< 1 мкм) кристалів, що пов'язані між собою міжкристалічним прошарком (скловидною фазою). Концентрація кристалів може змінюватись у значних межах (20...90 % за об'ємом

А)Походження назви

Введений І. І. Китайгородським (1888-1965) термін «ситали» походить від двох слів: «скло» і «кристал». За кордоном ці матеріали називають пірокерамом, склокерамікою, склофарфором та ін.

Б)Отримання.

Для виробництва ситалів використовують технологію виробництва скла, дещо видозмінену і доповнену на заключній стадії, оскільки отриманий з відповідного скла виріб потім має бути перетворено в ситал шляхом кристалізації. Ситали отримуються шляхом спрямованої (каталізованої) кристалізації скла спеціальних складів, що відбувається в об'ємі заздалегідь сформованого виробу.

Технологічна схема виробництва виробів зі скла включає наступні стадії: отримання шихти — варіння скла — формування виробів — відпал виробів, доповнюється ще одним технологічним етапом — кристалізацією виробів, яка може відбуватись після формування, оминаючи відпал, або здійснюватися після відпалу. У деяких випадках для отримання ситалів застосовують керамічну технологію («порошковий метод») за схемою: отримання шихти — варіння скла — гранулювання — подрібнення скла в порошок — отримання пластичної композиції: шлікера (скло + зв'язка) — формування виробів — спікання і кристалізація. Цей технологічний прийом є менш досконалим, оскільки отримані вироби завжди мають незначну пористість. Однак в особливих випадках і при отриманні деталей дуже, складної конфігурації порошковий метод може виявитися незамінним. Спечений ситал отримують двома методами: спіканням порошків скла (розмір зерен близько 10 мкм) з добавкою порошку каталізатора; спіканням порошку скла, в який каталізатор введений ще на стадії його варіння.

Технічні ситали отримують на основі штучних шихт тих частин силікатних систем, в яких кристалізуються фази, що мають задані властивості. Для термостійких ситалів такими фазами є кордієрит, сподумен LiAlSi2O6, евкриптит LiAlSiO4; для високоміцних — шпинель, муллит; для діелектриків — кордієрит, диопсид, воластоніт та ін. Такі властивості, як густина, коефіцієнт термічного розширення, теплопровідність, модуль пружності і діелектрична проникність залежать від властивостей фаз і адитивно змінюються зі зміною вмісту цих фаз. На фазовий склад ситалів впливають малі (до 1,5%) добавки модифікаторів (Na, K, Ca, Ba та ін.), склоутворювачів (B, Р та ін.) і оксидів проміжного типу, введення яких не змінює складу основних фаз, але помітно збільшує або знижує їх вміст. Необхідними добавками є речовини (Li, Rb, Cs, Ag, Au, Cu, Zn, Cd та ін.), що служать каталізаторами і центрами кристалізації скла.

Схема режиму термообробки скла для отримання ситалів

Головною в технології ситалів є двостадійна термообробка. Перша стадія — утворення центрів кристалізації - здійснюється для більшості складів шихт витримкою при температурі, оптимальній для цього процесу. Для фотоситалів вироби після відпалу опромінюють ультрафіолетовими або рентгенівськими променями. Прояв прихованого зображення відбувається при нагріванні скла в інтервалі між температурою розм'якшення і відпалу протягом 8 - 60 хв. Далі термообробка триває при вищих температурах для завершення процесу кристалізації і отримання ситалу. На другій стадії вироби відпалюють при температурі, найбільш сприятливій для росту кристалів.

Жароміцність, електропровідність, механічна міцність залежать не лише від властивостей фаз, але більшою мірою від структури і тому не є адитивними. Щільна мікростуктура забезпечує високу твердість і опір абразивному зношуванню. Підвищення рівня кристалізації збільшує модуль пружності. Поліпшенню механічних, термічних, електроізоляційних властивостей матеріалу і хімічної стійкості сприяє низький вміст скловидної фази.

Хоча контроль за фазовим складом і структурою у зв'язку з тонкозернистістю ситалів здійснюється в основному методами рентгенофазового аналізу і електронної мікроскопії, при активній участі петрологів проводиться дослідження кінетики зародкоутворення і зростання кристалів, що є теоретичною основою головних стадій виробництва ситалів.

Розглянуті закономірності служать основою пояснення утворення природних видів скла і ряду дрібнозернистих структур при магматичних процесах, зокрема облямівок малоглибинних інтрузивних тіл. Істотні вони і для методики загартування при проведенні експерименту.

На вигляд ситали є щільними матеріалами білого або від ясно-бежевого до коричневого кольору. Вони відрізняються підвищеною механічною міцністю, можуть мати як дуже маленький, так і великий коефіцієнт лінійного розширення, високу теплопровідність і задовільні електричні характеристики. Ситали з маленькими α1 дуже стійкі до нагрівання. Механічна міцність їх мало міняється при нагріванні до температури 700 - 800°С. Діелектричні втрати в ситалах багато в чому визначаються властивостями залишкової скловидної фази.

Як останні застосовуються: металеві Au, Ag, Cu, Pt, Pd в кількостях від сотих до десятих доль %; окисні TiO2, P2O5, Cr2O3, ZrO2, ZnO та ін. (перші %), фторидні Na3AlF6, Na2SiF6, CaF2 та ін. (обов'язково спільно з Al2O3), сірка або сульфати з добавкою коксу, сульфіди. До складу фотоситалів вводять як світлочутливі добавки Au, Ag, Cu у поєднанні з сенсибілізаторами. Сенсибілізатори - речовини, що сприяють повнішому протіканню фотохімічних процесів - підвищенню фоточутливості з утворенням прихованого поверхневого зображення. При отриманні фотохромних і інших світлочутливих видів скла як сенсибілізатори використовуються GeO2, одновалентне золото, сірчисті з'єднання лужних металів та ін. Застосування елементів платинової групи (Pt, Re, Pd, Os, Ir) не вимагає присутності сенсибілізаторів.

З метою здешевлення виробництва і комплексного використання сировини для виготовлення ситалів застосовуються: доменний шлак разом з кварцовим піском - для отримання шлакоситалів; магматичні ефузивні і інтрузивні гірські породи основного складу (базальти, габро, траппи), метаморфічні породи (тремолітові і сланці тальку), осадові породи (лісові суглинки, вапняна глина), нефеліновий концентрат - для отримання петроситалів. Оцінка придатності шлаків і гірських порід для цих цілей найпростіше і ефективно здійснюється петрографічними методами за їх мінеральним складом. Не останню роль грають знання петрохімічних особливостей і використання можливостей методів петрохімічних перерахунків.

В).Властивості ситалів.

Ситали мають високі міцність, твердість, зносостійкість, малий коефіцієнт лінійного розширення, хімічну і термічну стійкість, газо- і вологонепроникність. За своім призначенням поділяються на технічні та будівельні. Технічні ситали отримують на основі систем: Li2O--Al2O3 - SiO2, MO - Al2O3 - SiO2, Li2O - MO - Al2O3--SiO2, де M - Mg, Ca, Zn, Ba, Sr та ін.; MgO - Al2O3--SiO2 - K2O - F; MO - B2O3 - Al2O3 (де M - Ca, Sr, Pb, Zn); PbO - ZnO - B2O3 - Al2O3 - SiO2 та ін.

За основною властивостями і призначенням поділяються на: високоміцні, радіопрозорі хімічно стійкі, прозорі термостійкі, зносостійкі і хімічно стійкі, фотоситали, слюдоситали, біоситали, ситалоцементи, ситалоемалі, ситали із спеціальними електричними властивостями.

Г)Використання.

Головна особливість ситалів — тонкозерниста рівномірна склокристалічна структура, що обумовлює поєднання високої твердості і механічної міцності з відмінними електроізоляційними властивостями, високою температурою розм'якшення, хорошою термічною і хімічною стійкістю. Ситали міцніші і твердіші за вуглецеві сталі, і водночас легші за алюміній і не розм'якшуються при нагріванні до 1350...1450 °С. Завдяки таким властивостям і низькій собівартості ситали набувають дедалі ширшого застосування: у авіації, у виготовленні ізоляторів, деталей радіоапаратури, реакторів і хімічно стійкої апаратури.

У деталях радіоапаратури ситали використовуються як встановлювальні так як конденсаторні матеріали. У першому випадку ситали використовують як підкладки гібридних інтегральних мікросхем і декретних пасивних елементів (наприклад, тонкоплівкові резистори), деталі НВЧ-пристроїв і деяких типів електронних ламп. Перевагою ситалових конденсаторів є підвищена електрична міцність в порівнянні з керамічними конденсаторами.

У ситалах, виготовлених зі світлочутливого скла, отримують непрозорі білі або кольорові тривимірні зображення. Різна розчинність кристалічної і прозорої скловидної фаз відкриває можливості отримання опуклого зображення і виробництва з фотоситалів технічних виробів з сіткою прецизійно виконаних отворів будь-якого перетину.

Термічна стійкість ситалів забезпечується дуже малими (від 7·10-7 до 3·10-7), а іноді і від'ємними значеннями коефіцієнта термічного розширення. Оптичне кварцове скло може бути замінене прозорими ситалами, які переважають його меншою чутливість до теплових ударів. Прозорість пов'язана з розміром кристалів, меншим за довжину півхвилі видимого світла (соті долі мм), і близькістю до скловидної фази за показниками його заломлення. Світлочутливе скло і фотоситали знаходять широке застосування в мікроелектроніці, ракетній техніці, космосі, оптиці, поліграфії і побутових приладах. Так, з фоточутливого скла отримані матриці для газорозрядних приладів, фотокерам для виготовлення плат друкарського монтажу, з фотоситалу виготовляють перфоровані диски, що використовуються в катодно-променевих трубках і т. ін.

 

 

Література:

Хомченко И.Г. Общая химия: Учебник для техникумов. М.: Химия, 1987, с.176-181.