Задача про давление, надо рассказать про инотропные, батмотропные, дромотропные свойства сердца

Артериальное давление является одним из важных показателей гемодинамики. В нормальных условиях жизнедеятельности оно обусловлено силой сердечного выброса, объемом кровотока, эластическим сопротивлением сосудистых стенок.

хронотропный (увеличение частоты генерации электрических импульсов), батмотропный(повышение возбудимости), дромотропный (улучшение проводимости возбуждения).

 

Сердце получает обильную эфферентную иннервацию. Тела симпатических нейронов, иннервирующих сердце, располагаются в боковых рогах 1-5 грудных сегментов спинного мозга. Преганглионарные волокна выходят из спинного мозга в составе передних корешков. Постганглионарные волокна иннервируют мускулатуру предсердий, желудочков и проводящей системы сердца. Симпатические волокна распределяются в поверхностных слоях сердца, идут вдоль коронарных артерий, а затем пронизывают миокард. Тела парасимпатических нейронов располагаются в дорсальном ядре вагуса в продолговатом мозге.

При стимуляции блуждающих нервов уменьшается частота и сила сокращений сердца - отрицательный хронотропный и инотропный эффект. Одновременно понижается возбудимость сердечной мышцы - отрицательный батмотропный эффект, и уменьшается скорость проведения возбуждения по проводящей системе и миокарду - отрицательный дромотропный эффект.

Симпатический нерв оказывает виляние на те же стороны деятельности сердца, что и блуждающий нерв, но эти влияния имеют противоположный характер. Они проявляются в учащении сердцебиения, усилении сокращений предсердий и желудочков, ускорении проведения возбуждения в сердце и повышении возбудимости сердца (положительные хронотропный, инотропный, дромотропный и батмотропный эффекты).

 

Билет № 12

№1. 1. Вегетативная нервная система: особенности симпатического, парасимпатического и метасимпатического отделов, медиаторы. Особенности вегетативной Н.С.

Вегетативная нервная система - часть нервной системы, иннервирующая внутренние органы, кровеносные сосуды, железы, гладкую и отчасти поперечно-полосатую мускулатуру. В вегетативной нервной системе различают симпатический и парасимпатический отделы.

Симпатический отдел вегетативной нервной системы – это система активности, готовности к деятельности, во время которой интенсивно работают сердечно-сосудистая, дыхательная системы, повышается активность ЦНС, расходуются метаболические запасы организма. Парасимпатический отдел вегетативной нервной системы – система покоя, восстановления запасов.

Анатомической особенностью вегетативной нервной системы является то, что аксоны ее центральных нейронов направляются не прямо к органу, а контактируют с нервными клетками, образующими периферические нервные ганглии. Ганглии парасимпатического отдела расположены либо в стенах органа (интрамурально) или рядом (параорганно.)

В симпатическом отделе ганглии расположены в симпатическом стволе, чревном и брызжеечном сплетениях. Таким образом, вегетативная нервная система отличается от соматической эфферентным звеном, в котором выделяют преганглионарное и постганглионарное волокна. Центры симпатических и парасимпатических рефлекторных дуг расположены в различных отделах ЦНС. Парасимпатические центры представлены краниобульбарным и сакральным отделами, симпатические расположены в боковых рогах тораколюмбального отдела спинного мозга, однако и те и другие связаны с вышележащими структурами головного мозга.

Вегетативная нервная система оказывает три вида влияний на работу органов:

Пусковое влияние возбуждает орган, который работает непостоянно, например, потовые железы начинают выделять свой секрет под влиянием симпатической нервной системы при повышения температуры окружающей среды.

Корригирующее влияние - усиление или ослабление деятельности постоянно работающих органов. Например, увеличение или уменьшение частоты и силы сердечных сокращений под действием симпатических или блуждающего нервов.

Адаптационно-трофическое влияние вегетативной нервной системы заключается во включении в регуляцию деятельности организма систем обмена веществ, обеспечивающих координированное функционирование органов и систем при нагрузке, приспособление к изменяющимся внешним условиям, восстановление после физической нагрузки, при выздоровлении. Например, увеличение темпа метаболических процессов в интенсивно работающем миокарде.

Вегетативная симпатическая рефлекторная дуга. Двигательные нейроны симпатических рефлексов расположены в боковых рогах грудного и поясничного отделов спинного мозга, эфферентные нервные волокна прерываются в ганглиях симпатического ствола, чревном и брызжеечном сплетениях, медиатор в преганглионарных волокнах – АХ, мембранные рецепторы – Н-хр, в постганглионарных - норадреналин, мембранные рецепторы на эффекторе – αили b - адренорецепторы

Вегетативная парасимпатическая рефлекторная дуга. Двигательные нейроны парасимпатических рефлексов расположены в среднем мозге, районе моста, продолговатом мозге и в 1 - 5 крестцовые сегментах спинного мозга, эфферентные нервные

волокна прерываются в ганглиях параорганно или интрамурально, медиатор в преганглионарных волокнах – АХ, мембранные рецепторы – Н-хр, в постганглионарных – ацетилхолин, мембранные рецепторы на эффекторе холинорецепторы мускаринового типа (М-хр)

 

 

№2. Мембранный потенциал покоя...
Мембранный потенциал (или потенциал покоя) – это разность потенциалов между наружной и внутренней поверхностью мембраны в состоянии относительного физиологического покоя. Потенциал покоя возникает в результате двух причин:

1) неодинакового распределения ионов по обе стороны мембраны;

2) избирательной проницаемости мембраны для ионов. В состоянии покоя мембрана неодинаково проницаема для различных ионов. Клеточная мембрана проницаема для ионов K, малопроницаема для ионов Na и непроницаема для органических веществ.

За счет этих двух факторов создаются условия для движения ионов. Это движение осуществляется без затрат энергии путем пассивного транспорта – диффузией в результате разности концент-рации ионов. Ионы K выходят из клетки и увеличивают положительный заряд на наружной поверхности мембраны, ионы Cl пассивно переходят внутрь клетки, что приводит к увеличению положительного заряда на наружной поверхности клетки. Ионы Na накапливаются на наружной поверхности мембраны и увеличивают ее положительный заряд. Органические соединения остаются внутри клетки. В результате такого движения наружная поверхность мембраны заряжается положительно, а внутренняя – отрицательно. Внутренняя поверхность мембраны может не быть абсолютно отрицательно заряженной, но она всегда заряжена отрицательно по отношению к внешней. Такое состояние клеточной мембраны называется состоянием поляризации. Движение ионов продолжается до тех пор, пока не уравновесится разность потенциалов на мембране, т. е. не наступит электрохимическое равновесие. Момент равновесия зависит от двух сил:

1) силы диффузии;

2) силы электростатического взаимодействия. Значение электрохимического равновесия:

1) поддержание ионной асимметрии;

2) поддержание величины мембранного потенциала на постоянном уровне.

В возникновении мембранного потенциала участвуют сила диффузии (разность концентрации ионов) и сила электростатического взаимодействия, поэтому мембранный потенциал называется концентра-ционно-электрохимическим.

Для поддержания ионной асимметрии электрохимического равновесия недостаточно. В клетке имеется другой механизм – натрий-калиевый насос. Натрий-калиевый насос – механизм обеспечения активного транспорта ионов. В клеточной мембране имеется система переносчиков, каждый из которых связывает три иона Na, которые находятся внутри клетки, и выводит их наружу. С наружной стороны переносчик связывается с двумя ионами K, находящимися вне клетки, и переносит их в цитоплазму. Энергия берется при расщеплении АТФ.

№3. ДИСТАЛЬНЫЕ КАНАЛЬЦЫ (РЕАБСОРБЦИЯ, СЕКРЕЦИЯ)

Осмотическое концентрирование и разведение мочи.

после прохождения через проксимальные канальцы канальцевая жидкость поступает в петлю Генле и дистальный сегмент нефрона. С их участием связана гомеостатических функций почки – осмотическое концентрирование мочи. В процессе осмотического концентрирования мочи принимают участие: петля Генле, дистальный каналец, собирательная трубка, сосуды и интерстиций мозгового вещества, которые функционируют как единая поворотно - противоточно-множительная система.

процесс окончательного концентрирования мочи происходит в собирательных трубках, а условия для этого создаются работой всей поворотно – противоточно-множительной системы. Эта система создает гиперосмолярность мозгового вещества и при действии антидиуретического гормона (АДГ) заставляет воду переходить из собирательной трубки в интерстиций, а затем в кровеносные сосуды мозгового вещества, в результате чего образуется концентрированная моча. из проксимального канальца жидкость, изоосмотическая плазме крови, с концентрацией 300 мосм/л ,поступает в тонкое нисходящее колено петли Генле и, продвигаясь по нему, начинает терять воду; в результате ее осмотическая концентрация прогрессивно нарастает и на изгибе петли в сосочке достигает своего максимума (1400мосм/л). Затем она поворачивает и течет по восходящему колену в противоположном направлении (отсюда название поворотно-противоточная система), при этом происходит ее разбавление и уменьшение осмолярности до 100 мосм/л. . Далее в дистальном канальце происходит реабсорбция NаCl, воды и др. веществ и осмотическая концентрация вновь становится – 300 мосм/л, но по-прежнему канальцевая жидкость изосмотична крови,т.е.,в петле концентрирование не произошло. из дистального канальца жидкость поступает в собирательную трубку, где и будет происходить формирование окончательной мочи и процесс ее концентрирования. , осмолярность интерстициальной жидкости на каждом уровне идентична этой величине в нисходящем колене и СТ. Другими словами вокруг СТ на каждом “этаже” мозгового вещества имеется горизонтальный осмотический градиент в 200 мосм/л, а по вертикали - мощный корково-сосочковый осмотический градиент, созданный поворотно - противочной системой петли Генле. Таким образом, можно сказать, что петля Генле «работает» на собирательную трубку, создавая в интерстиции мозгового вещества зону гиперосмии. Это и будет та сила, которая способна вытянуть воду из собирательной трубки и произвести концентрирование мочи. Когда канальцевая жидкость поступает в собирательную трубку, ее осмолярность находится на том же уровне, что и осмолярность интерстициальной жидкости в этой зоне почки. В районе сосочка величина осмолярности достигает максимума (у человека она равна 1400 мосм/л), поэтому максимальная осмотическая концентрация мочи у человека тоже может достигать 1400 мосм/л.