Вывод распределения по Максвеллу

Получим теперь формулу распределения так, как это делал сам Джеймс Клерк Максвелл.

Рассмотрим пространство скоростных точек (каждую скорость молекулы представляем как точку (скоростную точку) в системе координат встационарном состоянии газа. Выберем бесконечно малый элемент объема .Так как газ стационарный, количество скоростных точек в остается неизменным с течением времени. Пространство скоростей изотропно, поэтому функции плотности вероятности для всех направлений одинаковы.

, , .

Максвелл предположил, что распределения скоростей по направлениям статистически независимы, то есть компонента скорости молекулы не зависит от и компонент.

фактическая вероятность нахождения скоростной точки в объёме ,где .Прологарифмируем последнее равенство:

.

Дифференцируя полученное выражение по компоненте скорости , получим:

,

,

.

Правая часть не зависит от и , значит и левая от и не зависит. Однако, и равноправны, следовательно, левая часть не зависит также и от . Значит, данное выражение может лишь равняться некоторой константе.

,

,

.

.

Следовательно, .

Отсюда: .

Теперь нужно сделать принципиальный шаг – ввести температуру. Кинетическое определение температуры (как меры средней кинетической энергии движения молекул):

,

где –постоянная Больцмана; . Ввиду равноправия всех направлений: .

Чтобы найти среднее значение , проинтегрируем её вместе с функцией плотности вероятности от минус до плюс бесконечности:

.

Отсюда найдём : .

Функция распределения плотности вероятности для (аналогично для ; ): .

Теперь рассмотрим распределение по величине скорости. Вернемся в пространство скоростных точек. Все точки с модулем скорости лежат в шаровом слое радиуса и толщины , и –объем этого шарового слоя.

.

.

Учтём, что: ; , получим:

,

где .Тогда окончательно получим: .

Таким образом, мы получили функцию плотности вероятности , которая и является распределением Максвелла.

Границы применимости

Условия применимости распределения Максвелла:

1. Равновесное состояние системы, состоящей из большого числа частиц.

2. Изотропная система.

3. Классическая система. Это значит, что система должна быть не релятивистской и не квантовой (взаимодействие частиц допускается, но только зависящее от относительного положения частиц).

Относительное число молекул , со скоростями, лежащими в интервале от до , рассчитывается как площадь заштрихованной полоски на рис. 111. Площадь, которая ограничена кривой распределения и осью абсцисс, равна единице. Это значит, что функция удовлетворяет условию нормировки : .

Вид функции распределения (рис. 111):

На рис. 111: – наиболее вероятная скорость молекул, соответствует максимуму кривой; –средняя скорость молекул газа; – cредняя квадратичная скорость молекул газа.

 

 

Рис. 112. Зависимость функции распределения Максвелла от температуры.
Рис. 111.

С ростом температуры максимум кривой распределения смещается в сторону больших температур (рис. 112).

Хотя уравнение Максвелла дает распределение скоростей, или, другими словами, долю молекул, имеющих специфическую скорость, часто более интересны другие величины, такие как средние скорости частиц. В следующих подразделах мы определим и получим наиболее вероятную скорость, среднюю скорость и среднеквадратичную скорость.

Характерные скорости