Энергетическая светимость. Испускательная и поглощательначя способности. Абсолютно черное тело

Энергетическая светимость тела RТ, численно равна энергии W, излучаемой телом во всем диапазоне длин волн (0<l<¥) с единицы поверхности тела, в единицу времени, при температуре тела Т, т.е.

Испускательная способность тела rl,Т численно равна энергии тела dWl, излучаемой телом c единицы поверхности тела, за единицу времени при температуре тела Т, в диапазоне длин волн от l до l+dl, т.е.

Эту величину называют также спектральной плотностью энергетической светимости тела.Энергетическая светимость связана с испускательной способностью формулой.


Поглощательная способность тела al,T - число, показывающее, какая доля энергии излучения, падающего на поверхность тела, поглощается им в диапазоне длин волн от l до l+dl, т.е.

Тело, для которого al,T=1 во всем диапазоне длин волн, называется абсолютно черным телом (АЧТ).

Тело, для которого al,T=const<1 во всем диапазоне длин волн называют серым.

6. Красная» грани́ца фотоэффе́кта — минимальная частота или максимальная длина волны света, при которой еще возможен внешний фотоэффект, то есть начальная кинетическая энергия фотоэлектронов больше нуля. Частота зависит только от работы выхода электрона:


где — работа выхода для конкретного фотокатода, h — постоянная Планка, а с — скорость света

7. 0,+ - 1

Когерентность. В физике существует 2 типа когерентности - пространственная и временная. Пространственная когерентность выражается в однотипности волнового фронта, т. е. пики и спады волн располагаются параллельно, когда свет выходит из лазера. Это обеспечивает синхронизацию фаз и фокусировку на очень маленькие участки.

Монохромность (временная когерентность). Это означает, что световые волны имеют одинаковую длину. Некоторые лазеры испускают лучи разной длины волны. Но явление это предсказуемо, и лазеры излучают свет только той длины, которая предусмотрена используемой в лазере средой.

Коллимация. Это означает, что все лучи, испускаемые лазером, параллельны и не рассеиваются с расстоянием.

Не нашла

11,

Билет

1. Длина́ волны́ — расстояние между двумя ближайшими друг к другу точками, колеблющимися в одинаковых фазах, обычно длина волны обозначается греческой буквой . По аналогии с возникающими волнами в воде от брошенного в неё камня — расстояние между двумя соседними гребнями волны. Одна из основных характеристик колебаний. Измеряется в единицах расстояния (метры, сантиметры и т. п.). Величина , обратная длине волны, называется волновым числом и имеет смысл пространственной частоты.

Получить соотношение, связывающее длину волны с фазовой скоростью (u) и частотой(f) можно из определения. Длина волны соответствует пространственному периоду волны, то есть расстоянию, которое точка с постоянной фазой проходит за время, равное периоду колебаний T, поэтому

Волнам де Бройля также соответствует определенная длина волны. Частице с энергией Е и импульсом p, соответствуют:

частота:

длина волны:

Где h — постоянная Планка.

2. Показа́тель преломле́ния вещества — величина, равная отношению фазовых скоростей света (электромагнитных волн) в вакууме и в данной среде .

Если свет попадает из вакуума в какую-нибудь среду, то

Где n - абсолютный показатель преломления данной среды. Относительный показатель преломления двух сред связанный с абсолютными показателями преломления этих сред, где и - соответственно абсолютные показатели преломления первой и второй сред.

Абсолютные показатели преломления света:

3. Если в оптической разности хода волн укладывается четное число полуволн или целое число волн, то в данной точке экрана наблюдается усиление интенсивности света (max). , где - pазность фаз складываемых волн.

4. Закон Малюса — физический закон, выражающий зависимость интенсивности линейно-поляризованного света после его прохождения через поляризатор от угла между плоскостями поляризации падающего света и поляризатора.

где — интенсивность падающего на поляризатор света, — интенсивность света, выходящего из поляризатора, — коэффициент прозрачности поляризатора

5. Зак Стефана-Больцмана :Мощность излучения абсолютно чёрного тела прямо пропорциональна площади поверхности и четвёртой степени температуры тела:

где - степень черноты (для всех веществ , для абсолютно черного тела ). При помощи закона Планка для излучения, постоянную можно определить как

где — постоянная Планка, — постоянная Больцмана, — скорость света.

6. При фотоэффекте часть падающего электромагнитного излучения от поверхности металла отражается, а часть проникает внутрь поверхностного слоя металла и там поглощается. Поглотив фотон, электрон получает от него энергию и, совершая работу выхода, покидает металл: , где — максимальная кинетическая энергия, которую может иметь электрон при вылете из металла.