Алюминии, магнии и их сплавы

Все алюминиевые и магниевые сплавы разделяются на две большие группы: деформируемые и литейные. Среди деформируемых алюминиевых сплавов следует выделить сплавы, которые по своему назначению относятся к ковочным сплавам. Деформируемые алюминиевые и магниевые сплавы в свою очередь подразделяются на сплавы, не упрочняемые и сплавы, упрочняемые термической обработкой. Большинство литейных сплавов относятся к группе сплавов, упрочняемых термической обработкой.

Дефекты в сварном соединении.

При дуговой сварке алюминиевых сплавов в среде инертных газов встречаются различные дефекты: газовая пористость (~48%), оксидные плены (~32%), вольфрамовые включения (~12%), трещины, несплавления и смещение кромок и др.

Кристаллизационные (горячие) трещины, окисные плены, непровар, несплавление, обнаруженные в сварном соединении, подлежат обязательному устранению. Что касается пор, вольфрамовых включений, раковин и других дефектов, то они допускаются без исправления конструкции в определенном количестве и объеме. Дефекты, выходящие по размерам и количеству из нормы, подлежат исправлению методом подварки.

Особенности технологии сварки.

Наибольшее распространение при изготовлении сварных конструкций из легких цветных сплавов получила дуговая сварка в среде инертных газов.

Особенности сварки алюминиевых и магниевых сплавов предопределяют повышенные требования к ее технологии. Первостепенное значение приобретает культура производства. В сборочно-сварочных цехах не допускается выполнение работ, связанных с интенсивным образованием пыли и дыма (газовая резка, электродуговая сварка, зачистка абразивными кругами и т. п.). Сварка алюминиевых и магниевых сплавов производится в чистых помещениях, чистота которых достигается их отделкой.

Одним из мероприятий по обеспечению равнопрочности (при сохранении пластических характеристик) сварного соединения при сварке сплавов в нагартованном или термически обработанном состоянии является утолщение кромок в зоне сварки, полученное механическим способом обработки или химическим фрезерованием.

Одним из основных рычагов повышения механических свойств сварных соединений является проковка, прокатка роликами сварного соединения в холодном или теплом состоянии.

Титан и его сплавы

При рассмотрении вопросов свариваемости Тi необходимо учитывать следующие особенности его физических свойств. Титан обладает весьма высокой температурой плавления (1668°С) и кипения (3260°С). Скрытая теплота плавления, а также испарения Тi почти в два раза больше, чем у Fe, поэтому расплавление Тi требует больших затрат энергии. По удельной теплоемкости Тi занимает промежуточное место между Аl и Fe.

Показатели свариваемости.

Обязательным условием получения качественного сварного соединения является надежная защита от газов атмосферы. Насыщение металла шва кислородом, азотом и водородом происходит при температурах более 350°С. Это резко снижает пластичность и длительную прочность сварных конструкций. Сварку необходимо производить в среде защитных газов (аргона или гелия) высокой чистоты, под специальными флюсами или в вакууме. Защитные средства должны обеспечивать защиту зоны сварки, ограниченной изотермой более 350°С. Необходимо также тщательно защищать и обратную сторону шва даже в том случае, если слои металла не расплавлялись, а только нагревались выше этой температуры.

Титан и его сплавы не склонны к образованию кристаллизационных (горячих) трещин в металле шва. Наиболее распространенными дефектами являются поры и холодные трещины. Для получения беспористых швов необходимо обеспечить требуемую чистоту основного металла и сварочных материалов, сварку выполнять на оптимальных режимах с соблюдением всех требований технологических процессов.

Бериллий и его сплавы