Task 10. Make the written translation into Russian ( 2,200 characters).

To the ancients, the processes of image formation were full of mystery. Indeed, for a long time there was a great discussion as to whether, in vision, something moved from the object to the eye or whether something reached out from the eye to the object. By the beginning of the 17th century, however, it was known that rays of light travel in straight lines, and in 1604 Johannes Kepler, a German astronomer, published a book on optics in which he postulated that an extended object could be regarded as a multitude of separate points, each point emitting rays of light in all directions. Some of these rays would enter a lens, by which they would be bent around and made to converge to a point, the «image» of the object point whence the rays originated. The lens of the eye was not different from other lenses, and it formed an image of external objects on the retina, producing the sensation of vision. There are two main types of image to be considered: real and virtual. A real image is formed outside the system, where the emerging rays actually cross; such an image can be caught on a screen or piece of film and is the kind of image formed by a slide projector or in a camera. A virtual image, on the other hand, is formed inside an instrument at the point where diverging rays would cross if they were extended backward into the instrument. Such an image is formed in a microscope or telescope and can be seen by looking into the eyepiece.

Optics had progressed rapidly by the early years of the 19th century. Lenses of moderately good quality were being made for telescopes and microscopes, and in 1841 the great mathematician Carl Friedrich Gauss published his classical book on geometrical optics. In it he expounded the concept of the focal length and cardinal points of a lens system and developed formulas for calculating the position and size of the image formed by a lens of given focal length. Between 1852 and 1856 Gauss’s theory was extended to the calculation of the five principal aberrations of a lens, thus laying the foundation for the formal procedures of lens design that were used for the next 100 years. Since about 1960, however, lens design has been almost entirely computerized, and the old methods of designing lenses by hand on a desk calculator are rapidly disappearing.

By the end of the 19th century numerous other workers had entered the field of geometrical optics, notably an English physicist, Lord Rayleigh, and a German physicist, Ernst Karl Abbe. Since 1940 there has been a great resurgence in optics on the basis of information and communication theory, which is treated at length below.


UNIT 3. A GLIMPSE OF MODERN PHYSICS

QUANTUM MECHANICS

If quantum mechanics hasn't profoundly shocked you,

you haven't understood it yet».

Niels Bohr [5]

Vocabulary