Схемы записи и воспроизведения

Классификация запоминающих устройств

По устойчивости записи и возможности перезаписи ЗУ делятся на:

  • Постоянные ЗУ (ПЗУ), содержание которых не может быть изменено конечным пользователем (например, CD-ROM ). ПЗУ в рабочем режиме допускает только считывание информации.
  • Полупостоянные ЗУ, в которые конечный пользователь может записать информацию только один раз (например, CD-R ).
  • Многократно перезаписываемые ЗУ (например, CD-RW ).
  • Оперативные ЗУ (ОЗУ) обеспечивает режим записи, хранения и считывания информации в процессе ее обработки. Разновидностью ОЗУ являются динамические ЗУ, в которых информация исчезает после отключения от источника тока (например, память на триггерах).

По типу доступа ЗУ делятся на:

  • Устройства с последовательным доступом (например, магнитные ленты).
  • Устройства с произвольным доступом ( RAM ) (например, магнитные диски).

По геометрическому исполнению:

  • дисковые (магнитные диски, оптические, магнитооптические);
  • ленточные (магнитные ленты, перфоленты);
  • барабанные (магнитные барабаны);
  • карточные (магнитные карты, перфокарты, флэш-карты и другие).

По физическому принципу:

  • Перфолента
  • Перфокарта
  • с магнитной записью
  • ферритовые сердечники
  • магнитные диски
  • НЖМД
  • Дискеты (НГМД)
  • магнитные ленты
  • магнитные карты
  • оптические
  • CD
  • DVD
  • HD-DVD
  • Blu-Ray
  • Магнитооптические:
  • CD-M

По форме записанной информации выделяют:

  • аналоговые запоминающие устройства
  • цифровые запоминающие устройства

Основными техническими характеристиками ВЗУ являются:

информационная емкость определяет наибольшее количество единиц данных, которое может одновременно храниться в ВЗУ. Она зависит от площади и объема носителя, а также от плотности записи;

плотность записи - число бит информации, записанных на единице поверхности носителя. Различают продольную плотность (бит/мм), т.е. число бит на единице длины носителя вдоль вектора скорости его перемещения (по дорожке), и поперечную плотность (бит/мм), т.е. число бит на единице длины носителя в направлении, перпендикулярном вектору скорости (число дорожек);

время доступа, т.е. интервал времени от момента запроса (чтения или записи) до момента выдачи блока.

скорость передачи данных определяет количество данных, считываемых или записываемых в единицу времени и зависит от скорости движения носителя, плотности записи, числа каналов и т.п.

Основы магнитной записи


Состояния материала носителя: размагниченное (а); намагниченное (б) - (д)

Запись и считывание информации происходят в процессе взаимодействия магнитного носителя и магнитной головки ( МГ ), которая представляет собой электромагнит. Материал магнитного покрытия можно представить множеством хаотически расположенных магнитных доменов, ориентация которых изменяется под действием внешнего магнитного поля, создаваемого МГ при подаче в ее обмотку тока записи. Если МГ приводит к ориентации доменов в плоскости носителя (рис. б, в), то магнитную запись называют горизонтальной, а если - к ориентации доменов перпендикулярно плоскости носителя (рис. г, д), то магнитную запись называют вертикальной. Хотя вертикальная запись потенциально позволяет добиться более высокой плотности записи, наиболее распространена горизонтальная запись.

Для регистрации информации используется переход от одного состояния намагниченности в противоположное. Этот переход является " отпечатком ", который может быть обнаружен с помощью МГ чтения.

Для горизонтальной магнитной записи МГ записи имеет небольшой зазор, через который замыкается магнитный поток. Под действием тока в обмотке домены носителя ориентируются в одном направлении. Если изменить направление тока записи Iw, то ориентация доменов будет противоположной Количество переходов, размещаемых на единице площади носителя, называют физической плотностью записи. Этот параметр зависит от метода магнитной записи, величины зазора в МГ и ее конструкции, расстояния между МГ и покрытием носителя и др.


Воздействие тока на различные участки носителя при его движении

Если плотность записи очень большая, то соседние переходы влияют друг на друга и это должно учитываться при построении схем записи и воспроизведения.

Магнитная головка чтения позволяет определить моменты времени, когда при движении носителя под ней оказываются границы между участками с противоположными состояниями намагниченности. Магнитный поток, создаваемый доменами носителя, частично замыкается через магнитопровод МГ чтения. Для сокращения длительности импульса воспроизведения уменьшают зазор в головке, толщину магнитного покрытия и расстояние между МГ и покрытием.

Если расстояние от МГ до покрытия равно нулю, то реализуется контактная запись (НМЛ, НГМД). Трение между носителем и МГ вызывает их износ и ограничивает скорость движения носителя. При использовании НЖМД реализуют бесконтактную запись, при которой МГ находится на расстоянии 0,2-5 мкм над поверхностью носителя.

Схемы записи и воспроизведения


Схемы записи (а) и воспроизведения (б)

Чтобы создать магнитный поток МГ, в ее обмотке должен протекать ток Iw или -Iw в процессе записи, а чтобы предотвратить разрушение записанной информации при хранении и считывании, ток записи должен отсутствовать. Этого можно добиться с помощью следующей схемы (рис. ,а). МГ записи имеет две обмотки W1 и W2 , включенные встречно. При наличии разрешающего сигнала записи WR ток от источника через резистор R протекает по обмотке W1, переводя носитель в одно из состояний намагниченности. Противоположное состояние намагниченности создается при протекании тока 2Iw по обмотке W2. Этот ток формируется усилителем записи при наличии сигнала разрешения записи и сигнала от схем кодирования.

Использование элементов с тремя состояниями ( Кл - ключ, переключатель) позволяет уменьшить энергетические затраты и несколько повысить быстродействие, так как требует коммутации меньших токов (рис. б). При считывании необходимо выделять слабые полезные сигналы на фоне помех и амплитудно-частотных искажений.