АМИНОКИСЛОТНЫЙ СОСТАВ БЕЛКА. КЛАССИФИКАЦИЯ И СВОЙСТВА АМИНОКИСЛОТ. КАЧЕСТВЕННЫЕ РЕАКЦИИ НА БЕЛКИ И АМИНОКИСЛОТЫ

Кожина Ольга Владимировна

Самарцев Виктор Николаевич

БИОХИМИЯ

Малый практикум

учебно-методическое пособие

 

ВВЕДЕНИЕ

Биохимия – наука о химическом строении и функциях веществ, входящих в состав живой материи, и их превращениях в процессах жизнедеятельности. Биохимия изучает различные структуры, свойственные живым организмам, и химические реакции, протекающие на клеточном и организменном уровнях. Биохимия изучает процессы, лежащие в основе обмена веществ.

В биохимии выделяют два раздела:

1. СТАТИЧЕСКАЯ биохимия – изучает состав живых организмов.

2. ДИНАМИЧЕСКАЯ биохимия – изучает обмен веществ.

Статическая биохимия выявила характерную черту живых клеток – их сложность и высокий уровень молекулярной организации, переход от более простых компонентов клетки к более сложным. Структурную организацию живой клетки можно представить в виде следующей схемы: неорганические вещества (H2O, N2, CO2, O2, P, S) → мономеры(нуклеотиды, аминокислоты, моносахариды, жирные кислоты, глицерин) → макромолекулы (нуклеиновые кислоты, белки, полисахариды, липиды) → сложные макромолекулы(нуклеопротеины, гликопротеины, липопротеины) → комплексы (рибосомы, ядрышко, мембраны, сократительные системы) → органеллы (ядро, митохондрии, лизосомы) → клетка.

Переход от простых биомолекул к сложным биологическим структурам основывается на физико-химических принципах самоорганизации.

Задачей динамической биохимии является изучение обмена веществ, или метаболизма клетки. Обмен веществ – это совокупность двух диаметрально противоположных, но гармонически сочетающихся процессов – синтеза (анаболизма) и распада (катаболизма) веществ. Обмен веществ в клетке не отделим от обмена энергии, т.к. синтез веществ невозможен без затраты энергии.

Другой чертой обмена веществ является тонкое регулирование скорости протекания отдельных химических реакций. Важную роль в регулировании процессов метаболизма играют биологические катализаторы – ферменты. Регуляция клеточного метаболизма может осуществляться либо путем активации или подавления действия ферментов, либо за счет изменения скорости их биосинтеза в клетке.

 

 

Раздел 1. БЕЛКИ

Тема 1

АМИНОКИСЛОТНЫЙ СОСТАВ БЕЛКА. КЛАССИФИКАЦИЯ И СВОЙСТВА АМИНОКИСЛОТ. КАЧЕСТВЕННЫЕ РЕАКЦИИ НА БЕЛКИ И АМИНОКИСЛОТЫ

 

Белок – высокомолекулярное азотистое природное соединение, распадающееся в ходе гидролиза на аминокислоты.

Белки содержат углерода - 50-55 %, водорода - 6,5-7,3 %, азота - 15-18 %, кислорода - 21-24 %, серы - до 2,4 % и золы - до 0,5 %.

Для построения всех белков используется один и тот же набор из 20 различных аминокислот, ковалентно связанных друг с другом в определенной, характерной только для данного белка последовательности.

Общей структурной особенностью аминокислот является наличие карбоксильной и аминогруппы, связанных с одним и тем же атомом углерода. Различаются аминокислоты боковыми цепями (R-группами), которые у разных аминокислот неодинаковы по структуре, электрическому заряду и растворимости в воде. Карбоксильные и аминогруппы аминокислот участвуют в образовании пептидных связей.

Помимо 20 стандартных, основных или нормальных аминокислот, входящих в состав белков, существуют другие аминокислоты, присутствующие в живых организмах, но не встречающиеся в белках.

Стандартные аминокислоты имеют трехбуквенные и однобуквенные условные обозначения (таблица 1).

 

 

Таблица 1

Сокращенные обозначения аминокислот

Аминокислота Трехбуквенное сокращенное обозначение Однобуквенное обозначение
Аланин ала Ala A
Аргинин арг Arg R
Аспарагин асн Asn N
Аспарагиновая кислота асп Asp D
Валин вал Val V
Гистидин гис His H
Глицин гли Gly G
Глутамин глн Gln Q
Глутаминовая кислота глу Glu E
Изолейцин иле Ile I
Лейцин лей Leu L
Лизин лиз Lys K
Метионин мет Met M
Пролин про Pro P
Серин сер Ser S
Тирозин тир Tyr Y
Треонин тре Thr T
Триптофан три Trp W
Фенилаланин фен Phe F
Цинтеин цис Cys C

 

Протеиногенные аминокислоты делят на 4 группы по полярности радикалов: 1) неполярные (гидрофобные) (рисунок 1);2) полярные (гидрофильные) незаряженные (рисунок 2);3) отрицательно заряженные(рисунок 3);4) положительно заряженные (рисунок 4).

 

Рисунок 1. Неполярные (гидрофобные) аминокислоты: а) Аланин (Ala) – Ала; б) Валин (Val) – Вал; в) Пролин (Pro) – Про; г) Лейцин (Leu) – Лей; д) Изолейцин (Ile) – Иле; е) Фенилаланин (Phe) – Фен; ж) Метионин (Met) – Мет; з) Триптофан (Trp) – Три.

Рисунок 2. Незаряженные полярные аминокислоты: а) Глицин (Gly)- Гли; б) Серин (Ser) – Сер; в) Треонин (Thr) – Тре; г) Тирозин (Tyr) – Тир; д) Аспарагин (Asn) – Асн; е) Глутамин (Gln) – Глн; ж) Цистеин (Cys) - Цис

Рисунок 3. Отрицательно заряженные аминокислоты: а) Аспарагиновая кислота (Asp) – Асп; б) Глутаминовая кислота (Glu) – Глу.

Рисунок 4. Положительно заряженные аминокислоты: а) Лизин (Lys) – Лиз; б) Аргинин (Arg) – Арг; г) Гистидин (His) – Гис.

 

Радикалы аминокислот участвуют в образовании связей: 1) гидрофобные радикалы участвуют в гидрофобных взаимодействиях; 2) гидрофильные радикалы формируют водородные связи; 3) полярные (заряженные) радикалы образуют ионные связи; 4) сближение двух радикалов цистеина цис-SH + цис-SH ведет к образованию дисульфидной связи цис-S–S-цис.

 

Лабораторная работа №1