Современное объяснение эффекта Ранка

Устройства на эффекте Ранка

Эффект Ранка с самого начала привлекал изобретателей кажущейся простотой технической реализации — в самом деле, простейшая реализация вихревой трубы представляет собой кусок трубы самый обычной, куда с одной стороны внутрь тангенциально подаётся исходный поток, а на противополжном торце установлена кольцевая диафрагма, и из её внутреннего отверстия выходит охлаждённая часть потока, а из щели между внешним краем диафрагмы и внутренней поверхностью трубы — его горячая часть. Однако на самом деле не всё так просто — добиться эффективного разделения удаётся далеко не всегда, да и КПД таких установок обычно заметно уступает широко распространённым компрессорным тепловым насосам. Кроме того, обычно параметры установки на эффекте Ранка рассчитаны для конкретной мощности, определяемой скоростью и расходом вещества исходного потока, и когда параметры входного потока отклоняются от оптимальных значений, КПД вихревой трубы существенно ухудшается. Тем не менее следует заметить, что возможности некоторых установок на эффекте Ранка внушают уважение — например, рекордное охлаждение, которого удалось достигнуть на одной ступени, составляет более 200°С!

Впрочем, с учётом нашего климата, гораздо больший интерес представляет использование эффекта Ранка для обогрева, да при этом ещё хотелось бы и не выходить за рамки «подручных средств».

 

Суть эффекта Ранка

При движении потока газа или жидкости по плавно поворачивающей поверхности трубы у её внешней стенки образуется область повышенного давления и температуры, а у внутренней (либо в центре полости, если газ закручен по поверхности цилиндрического сосуда) — область пониженной температуры и давления. Это достаточно хорошо известное явление называется эффектом Ранка по имени открывшего его в 1931 г. французского инженера Жозефа Ранка (G.J.Ranque, иногда пишут «Ранке»), или эффектом Ранка-Хилша (немец Robert Hilsh продолжил исследование этого эффекта во второй половине 1940-х годов и улучшил эффективность вихревой трубы Ранка).

Конструкции, использующие эффект Ранка, представляют собой разновидность теплового насоса, энергия для функционирования которого берётся от нагнетателя, создающего поток рабочего тела на входе трубы.

Парадоксальность эффекта Ранка заключается в том, что центробежные силы во вращающемся потоке направлены наружу. Как известно, более тёплые слои газа или жидкости имеют меньшую плотность и должны подниматься вверх, а в случае цетробежных сил — стремиться к центру, более холодные имеют большую плотность и, соответственно, должны стремиться вниз (к периферии). Между тем при большой скорости вращающегося потока всё происходит с точностью до наоборот!

Эффект Ранка проявляется как для потока газа, так и для потока жидкости, которая, как известно, является практически несжимаемой и потому фактор адиабатического сжатия / расширения к ней неприменим. Тем не менее, в случае жидкости эффект Ранка обычно выражен значительно слабее — возможно, именно по этой причине, да и очень малая длина свободного пробега частиц затрудняет его проявление. Но это верно, если оставаться в рамках традиционной молекулярно-кинетической теории, а у эффекта могут быть и совсем другие причины.
5

На данный момент наиболее полное и достоверное научное описание эффекта Ранка представлено в статье А.Ф.Гуцола. К сожалению, он оставляет без внимания первый фактор (адиабатическое сжатие газа у внешнего радиуса и расширение у внутреннего), который весьма существенен при использовании сжимаемых газов, правда, действует он только внутри устройства. А второй фактор А.Ф.Гуцол называет «разделением быстрых и медленных микрообъёмов».

 

 


6

Современное объяснение эффекта Ранка

В настоящее время наиболее общепризнанным объяснением эффекта Ранка является следующее.

Известно, что если измерять температуру движущегося (скажем, в трубе) потока двумя термометрами, то они покажут разную температуру, если один из них неподвижен относительно потока (т.е. перемещается вместе с ним), а другой вмонтирован в трубу. При этом температура, измеренная вмонтированным в трубу термометром будет связана с температурой, измеренной термометром, движущимся вместе с потоком, следующим образом:

T0 = T + v2 / (2 · cp) (1),

где T0 — температура, измеренная вмонтированным в трубу термометром, «температура торможения»; T — «собственная» температура потока, измеренная термометром, движущимся вместе с ним, «статическая температура»; v — скорость движения потока по трубе; cp — удельная теплоёмкость вещества потока.

Таким образом, мы видим, что температура торможения, измеряемая неподвижным термометром, при одной и той же собственной статической температуре этого потока будет зависеть от его скорости. Если относительно такого термометра остановить весь газ, то вся его температура поднимется до этого значения — кинетическая энергия преобразуется в тепловую. Именно это явление вызывает нагрев передних кромок крыла у скоростных
самолётов (прежде всего сверхзвуковых), а также сгорание в атмосфере метеоритов и отработавших свой срок космических летательных аппаратов.

Предполагается, что возле выходного отверстия диафрагмы угловые скорости и холодного и горячего потоков равны, то есть весь вихрь вращается как единое твёрдое тело («квазитвёрдый» вихрь). В таких условиях на разных радиусах вихревой трубы газ имеет различную линейную скорость, соответственно он имеет и различную термодинамическую
7
температуру. Благодаря эффективному турбулентному перемешиванию внутри вихревой трубки, эти температуры стремятся выровняться, из-за чего и происходит перераспределение собственных («термостатических») температур различных частей потока газа, которое становится явным, когда газ выходит из вихревой трубы.

К сожалению, это объяснение нельзя признать удовлетворительным. Во-первых, оно является «чисто математическим», и если пытаться наполнить его физической сутью, то мы приходим к тому же «разделению быстрых и медленных микрообъёмов». Во-вторых, не совсем понятно, с какой стати именно температура торможения во всём сечении вихревой трубы априори принимается одинаковой? А приняв в качестве основной гипотезу обмена энергией между различными частями потока, мы должны придти к обратному распределению температур. В самом деле, внешние слои имеют наибольшую линейную скорость и, следовательно, наибольшую температуру торможения. Следовательно, энергия от них должна перетекать к медленно движущимся центральным слоям, повышая их собственную температуру. Таким образом, из середины должен выходить горячий газ, а из периферийной щели — холодный, что прямо противоречит наблюдаемым фактам. Поэтому утверждается, что быстро движущийся на периферии газ, попадая в результате турбулентного движения в центр, там тормозится и теряет свою кинетическую энергию. Но опять же, куда может деться эта энергия? Только в тепло, а значит, опять-таки, в середине температура
должна расти. Наконец, есть данные, что вихрь внутри трубы Ранка отнюдь не квазитвёрдый, и более того, его центральная часть может вращаться в противоположную сторону, а в таком случае вся эта теория вообще не соответствует практике. В общем, прежде чем строить теории, необходимы практические измерения хотя бы скоростей и направлений вращения на разных радиусах и на разных расстояниях от диафрагмы.