Раскрытие сложной структуры атома. Рождение квантовой и релятивистской физики

Еще в конце XIXв. большинство ученых склонялось к точке зрения, что физическая картина мира в основном построена и останется в дальнейшем незыблемой. Предстоит уточнять лишь детали. Но в первые десятилетия XX века физические воззрения изменились коренным образом. Это было следствием «каскада» научных открытий, сделанных в течение чрезвычайно короткого исторического периода, охватывающего последние годы XIX столетия и первые десятилетия XXв.

В 1896г. французский физик Антуан Анри Беккерель (1852-1908) открыл явление самопроизвольного излучения урановой соли. Однако природа нового явления еще не была понята.

В его исследование включились французские физики, супруги Пьер Кюри (1859–1906) и Мария Склодовская-Кюри (1867–1934). Прежде всего их заинтересовал вопрос: нет ли других веществ, обладающих свойством, аналогичным урану? В 1898г. были открыты новые элементы, также обладающие свойством испускать «беккерелевы лучи», – полоний и радий. Это свойство супруги Кюрина назвали радиоактивностью. Их напряженный труд принес щедрые плоды: с 1898г. одна за другой стали появляться статьи о получении новых радиоактивных веществ.

А годом раньше, в 1897г., в лаборатории Кавендиша и Кембридже при изучении электрического разряда в газах (катодных лучей) английский физик Джозеф Джон Томсон (1856–1940) открыл первую элементарную частицу – электрон. В последующих опытах по измерению заряда электрона и получению отношения этого заряда к массе было обнаружено совершенно необычное явление зависимости массы электрона от его скорости.

В 1911г. знаменитый английский физик Эрнест Резерфорд (1871–1937) предложил свою модель атома, которая получила название планетарной. По его мнению, атом подобен Солнечной системе: он состоит из ядра и электронов, которые обращаются вокруг него.

Но планетарная модель Резерфорда обнаружила серьезный недостаток: она оказалась несовместимой с электродинамикой Максвелла. Согласно законам электродинамики, любое тело (частица), имеющее электрический заряд и движущееся с ускорением, обязательно должно излучать электромагнитную энергию. Но в этом случае электроны очень быстро потеряли бы свою кинетическую энергию и упали на ядро. С этой точки зрения, оставалась непонятной необычайная устойчивость атомов.

Разрешение возникших противоречий выпало на долю известного датского физика Нильса Бора (1885–1962), предложившего свое представление об атоме. Зная о модели Резерфорда и приняв ее в качестве исходной, Н.Бор разработал 1913г. квантовую теорию строения атома. В ее основе лежали следующие постулаты: в любом атоме существуют дискретные (стационарные состояния), находясь в которых атом энергию не излучает; при переходе атома из одного стационарного состояния в другое он излучает или поглощает порцию (квант) энергии.

Предложенная Бором модель атома, которая возникла в результате развития исследований радиоактивного излучения и квантовой теории, фактически явилась дополненным и исправленным вариантом планетарной модели Резерфорда. Поэтому в истории атомной физики говорят о квантовой модели атома Резерфорда – Бора.

Следует отметить, что научные заслуги Резерфорда не ограничиваются исследованиями, приведшими к упомянутой планетарной модели атома. Совместно с английским химиком Фредериком Содди (1877–1956) он провел серьезное изучение радиоактивности. Резерфорд и Содди дали трактовку радиоактивного распада как процесса превращения химических элементов из одних в другие. «Неизменяемость свойств электронов при обычных физических и химических процессах, – писал Н. Бор, – непосредственно объясняется тем, что в таких процессах, хотя связи электронов и могут сильно меняться, ядро остается без изменений. Резерфордом была доказана и взаимная превращаемость атомных ядер под действием мощных сил. Тем самым Резерфорд открыл совершенно новую область исследований, которую часто называют современной алхимией».[23]

Как тут не вспомнить крушение стремлений и надежд многих поколений алхимиков получать одни химические элементы (чаще всего – золото) из других в связи с открытием во второй половине XVIIIв. Лавуазье закона неизменности химических элементов. И вдруг, в начале XXв., оказалось, что в результате радиоактивного распада некоторые элементы самопроизвольно превращаются в другие. Это было поистине научной сенсацией.

Впрочем, наука XX века принесла немало сенсационных открытий, многие из которых совершенно не укладывались в представление обыденного человеческого опыта. Ярким примером этого может служить теория относительности, созданная в начале нашего столетия мало кому известным тогда мыслителем Альбертом Эйнштейном (1879–1955).

В 1905г. им была создана так называемая специальная теория относительности. В этой теории было установлено, что пространственно-временные свойства тел меняются с изменением скорости их движения. По мере приближения скорости движения тела к скорости света его линейные размеры сокращаются в направлении движения, а ход времени замедляется. Эти выводы специальной теории относительности нашли экспериментальное подтверждение.

Новые аспекты зависимости пространственно-временных характеристик от материальных процессов раскрыла общая теория относительности (1916г.). Согласно этой теории пространство в разных частях Вселенной имеет различную кривизну и описывается неевклидовой геометрией. Кривизна пространства обусловлена действием гравитационных полей, создаваемых огромными массами космических тел. Эти поля вызывают и замедление хода протекания материальных процессов.

Хотя имя А. Эйнштейна по сей день связывается с теорией относительности и вытекающими из нее новыми, релятивистскими представлениями о материальном мире, эта теория была далеко не единственным его научным достижением. Опираясь на учение Планка о квантах, Эйнштейн еще в 1905г. сумел обосновать природу фотоэффекта. Каждый электрон выбивается из металла под действием отдельного светового кванта, или фотона, который при этом теряет свою энергию. Часть этой энергии уходит на разрыв связи электрона с металлом. Эйнштейн показал зависимость энергии электрона от частоты светового кванта и энергии связи электрона с металлом.

Казалось, что корпускулярная теория материи торжествует. Фотон, например, явно имеет корпускулярные свойства (русский физик П. Н. Лебедев экспериментально доказал в 1899г. существование светового давления). Но вскоре выяснилось, что определить энергию фотона (частицы света, не обладающей массой покоя) можно было, только представляя его себе в виде волны с соответствующей длиной и частотой. Получалось, что фотон – это одновременно и волна и частица. Распространяется он как волна, излучается и поглощается как частица.

В 1924г. произошло крупное событие в истории физики: французский ученый Луи де Бройль (1892-1987) выдвинул идею о волновых свойствах материи. «Почему, если волновой материи присущи свойства корпускулярности, – писал он, – мы не вправе ожидать и обратного: что корпускулярной материи присущи волновые свойства? Почему бы не мог существовать закон, единый для всякого вообще материального образования, не важно, волнового или корпускулярного?».[24]

Наиболее убедительное подтверждение существования волновых свойств материи было получено в результате открытия (наблюдений) дифракции электронов в эксперименте, поставленном в 1927г. американскими физиками Клинтоном Дэвиссоном (1881-1958) и Лестером Джермером (1896-1971). Быстрые электроны, проходя сквозь очень тонкие пластинки металла, вели себя подобно свету, проходящему мимо малых отверстий или узких щелей.

Экспериментально подтвержденная гипотеза де Бройля превратилась в принципиальную основу, пожалуй, наиболее широкой физической теории – квантовой механики. У объектов микромира, рассматриваемых с ее позиций, обнаружились такие свойства, которые совершенно не имеют аналогий в привычном нам мире. Прежде всего – это корпускулярно-волновая двойственность, или дуализм элементарных частиц (это и корпускулы, и волны одновременно, а точнее – диалектическое единство свойств тех и других). Движение микрочастиц в пространстве и времени нельзя отождествлять с механическим движением макрообъекта. Например, положение элементарной частицы в пространстве в каждый момент времени не может быть определено с помощью системы координат, как для привычных нам тел окружающего мира. Движение микрочастиц подчиняется законам квантовой механики.

Начавшийся еще в XIX веке переход физической науки к изучению электромагнитного поля, усиливающийся процесс математизации физики, появление в ХХ столетии совершенно новых, квантово-релятивистских взглядов на физическую реальность повлекли за собой потерю прежних наглядных представлений, которыми характеризовалась классическая механика. Потеря той наглядности, которая была естественной для механики, имевшей дело с медленными движениями и большими массами объектов макромира, и углубление познания в весьма сложные, совершенно необычные для «здравого смысла» процессы микромира, потребовали изменения стиля научного мышления. По этому поводу известный американский физик Ричард Фейнман писал следующее: «Раз поведение атомов так не похоже на наш обыденный опыт, то к нему очень трудно привыкнуть. И новичку в науке, и опытному физику – всем оно кажется своеобразным и туманным. Даже большие ученые не понимают его настолько, как им хотелось бы, и это совершенно естественно, потому что весь непосредственный опыт человека, вся его интуиция – все прилагается к крупным телам. Мы знаем, что будет с большим предметом; но именно так мельчайшие тельца не поступают. Поэтому, изучая их, приходится прибегать к различного рода абстракциям, напрягать воображение и не пытаться связывать их с нашим непосредственным опытом».[25]

Все вышеизложенные революционные открытия в физике перевернули ранее существующие взгляды на мир. Исчезла убежденность в универсальности законов классической механики. Теперь уже вряд ли можно найти физика, который считал бы, что все проблемы его науки можно решить с помощью механических понятий и уравнений. Рождение и развитие атомной физики, таким образом, окончательно сокрушило прежнюю механистическую картину мира.

Вместе с этим закончился прежний, так называемый классический период в развитии естествознания, характерный для эпохи Нового времени. Наступил новый этап неклассического естествознания XX века, характеризующийся, в частности, новыми, квантово-релятивистскими представлениями о физической реальности.