Примеры дифференцирования сложной функции.

1°)

2°)

3°)

4°)

5°)

6°)

 

В задачах 2.2.а-2.2.з для функции требуется найти производную .

Задача 2.2.а .

.

Задача 2.2.б .

Задача 2.2.в .

Задача 2.2.г .

Задача 2.2.д .

Решение.При дифференцировании этой функции удобно воспользоваться приемом, который называется логарифмическим дифференцированием. Прежде чем вычислять производную, найдем логарифм функции :

Теперь продифференцируем правую и левую часть полученной формулы, а затем приравняем соответствующие производные. Имеем:

;

Отсюда,

Задача 2.2.е .

Решение.Здесь также удобно воспользоваться приемом логарифмического дифференцирования.

;

откуда следует, что

Задача 2.2.ж , .

Решение.Функция задана в параметрической форме, поэтому следует воспользоваться формулой для параметрической производной:

Получаем:

,

,

откуда

Задача 2.2.з .

Решение.Функция задана неявным уравнением. Чтобы найти производную , продифференцируем тождество . Получаем:

Перегруппируем слагаемые, выделяя члены, содержащие производную :

откуда следует, что

Непрерывность и типы разрыва функций.

Имеется три типа разрывов функций.

а) Устранимый разрыв, когда существует предел функции в точке , но он не равен значению функции в предельной точке

.

б) Разрыв первого рода, когда в точке существует предел слева и предел справа, однако они не равны между собой

.

в) Все остальные виды разрыва называются разрывами второго рода.

 

Задачи 2.3.а-2.3.б.Найти точки разрыва функций

,

и определить тип разрыва. Сделать схематический чертеж.

Решение.Функция может иметь разрыв в точках , . В точке в пределе имеет место соотношение , то есть функция становится неограниченной в окрестности . Поскольку при , и при , то функция стремится к при , и к при .

В точке ситуация сложнее. При в пределе получаем , то есть мы имеем дело с неопределенностью. Чтобы найти предел , воспользуемся правилом Лопиталя:

.

Получаем:

Следовательно,

В случае правостороннего предела ситуация проще:

Таким образом, в точке также имеет место разрыв второго рода.

Схематическое поведение графика изображено на рисунке.

 

 

 

0 7 10

 

Функция может иметь разрывы только в точках и . В окрестности точки функция имеет разрыв второго рода. При получаем, что , а при получаем, что .

Найдем пределы при и при . Вновь используем правило Лопиталя. Пусть сначала .

При вычисления аналогичны:

Следовательно, у функции в точке имеется устранимый разрыв. Эскиз графика изображен на рисунке.

 

 

 

6 7 8 10