Гидродинамические параметры потока

Причинами движения жидкости являются действующие на нее силы: объемные или массовые силы (сила тяжести, инерционные силы) и поверхностные силы (давление, трение). В отличие от гидростатики, где основной величиной, характеризующей состояние покоя жидкости, является гидростатическое давление, которое определяется только положением точки в пространстве, т.е. ,в гидродинамике основными элементами, характеризующими движение жидкости, являются: гидродинамическое давление и скорость движения (течения) жидкости.

Гидродинамическое давление р – это внутреннее давление. развивающееся при движении жидкости. Скорость движения жидкости в данной точке и – это скорость перемещения находящейся в данной точке частицы жидкости, определяемая длиной пути l, пройденного этой частицей за единицу времени t.

В общем случае основные элементы движения жидкости р и и для данной точки зависят от ее положения в пространстве (координат точки) и могут изменяться во времени. Аналитически это положение гидродинамики записывается так:

,

.

Задачей гидродинамики и является определение основных элементов движения жидкости р и u, установление взаимосвязи между ними и законов изменения их при различных случаях движения жидкости.

Метод Эйлера

Трудность изучения законов движения жидкости обусловлива­ется самой природой жидкости и особенно сложностью учета ка­сательных напряжений, возникающих вследствие наличия сил трения между частицами. Поэтому изучение гидродинамики, по предложению Л. Эйлера, удобнее начинать с рассмотрения не­вязкой (идеальной) жидкости, т. е. без учета сил трения, внося затем уточнения в полученные уравнения для учета сил трения реальных жидкостей.

Существует два метода изучения движения жидкости: метод Ж. Лагранжа и метод Л. Эйлера.

Метод Лагранжа заключается в рассмотрении движения каж­дой частицы жидкости, т. е. траектории их движения. Из-за зна­чительной трудоемкости этот метод не получил широкого распро­странения.

Метод Эйлера заключается в рассмотрении всей картины дви­жения жидкости в различных точках пространства в данный мо­мент времени. Этот метод позволяет определить скорость движе­ния жидкости в любой точке пространства в любой момент вре­мени, т. е. характеризуется построением поля скоростей и поэтому широко применяется при изучении движения жидкости. Недостаток метода Эйлера в том, что при рассмотрении поля скоростей не изучается траектория отдельных частиц жидкости.

При перемещении жидкости силу давления, отнесенную к единице площади, рассматривают как напряжение гидродинами­ческого давления, подобно напряжению гидростатического дав­ления при равновесии жидкости. Как и в гидростатике, вместо термина «напряжение давления» используют выражение «гидро­динамическое давление», или просто «давление».

По характеру изменения скоростей во времени движение жидкости бывает установившееся и неустановившееся.

Суть другого метода, метода Эйлера заключается в том, что движение жидкости подменяется изменением поля скоростей. Под полем скоростей понимают некоторую дос­таточно большую совокупность точек бесконечного пространства занятого движущейся жидкостью, когда в каждой точке пространства в каждый момент времени находится час­тица жидкости с определённой скоростью (вектором скорости). Припишем неподвижным точкам пространства скорость частиц жидкости, которые в данный момент времени нахо­дятся в этих точках. Поскольку пространство бесконечно и непрерывно, то мы имеем мас­сив данных о скоростях достаточно полный, чтобы определить (задать) поле в каждой его точке. Условно, нос достаточной точностью такое поле можно считать непрерывным.

Несмотря на то, что исходные условия создания модели движущийся жидкости до­вольно сложные, тем не менее, метод Эйлера весьма удобен для расчётов.