Предел функции при стремлении аргумента к бесконечности

Определение. Число А называется пределом функции f(x) при х®¥, если для любого числа e>0 существует такое число М>0, что для всех х, ïхï>M выполняется неравенство

 

При этом предполагается, что функция f(x) определена в окрестности бесконечности.

Записывают:

 

 

Графически можно представить:

 
 


y y

 

 

A A

 

0 0

x x

 

y y

 
 

 


A A

 

0 0

x x

 

Аналогично можно определить пределы для любого х>M и

для любого х<M.

 

Основные теоремы о пределах

Теорема 1. , где С = const.

Следующие теоремы справедливы при предположении, что функции f(x) и g(x) имеют конечные пределы при х®а.

Теорема 2.

Доказательство этой теоремы будет приведено ниже.

Теорема 3.

Следствие.

 

Теорема 4. при

Теорема 5. Если f(x)>0 вблизи точки х = а и , то А>0.

Аналогично определяется знак предела при f(x) < 0, f(x) ³ 0, f(x) £ 0.

Теорема 6. Если g(x) £ f(x) £ u(x) вблизи точки х = а и , то и .

 

Пример. Найти предел

Так как tg5x ~ 5x и sin7x ~ 7x при х ® 0, то, заменив функции эквивалентными бесконечно малыми, получим:

 

Пример. Найти предел .

Так как 1 – cosx = при х®0, то .

 

Пример. Найти предел

 

Если a и b - бесконечно малые при х®а, причем b - бесконечно малая более высокого порядка, чем a, то g = a + b - бесконечно малая, эквивалентная a. Это можно доказать следующим равенством .

Тогда говорят, что a - главная частьбесконечно малой функции g.

 

Пример. Функция х2 +х – бесконечно малая при х®0, х – главная часть этой функции. Чтобы показать это, запишем a = х2, b = х, тогда

.

 

 

Некоторые замечательные пределы

, где P(x) = a0xn + a1xn-1 +…+an,

Q(x) = b0xm + b1xm-1 +…+bm - многочлены.

 

Итого:

 

Первый замечательный предел

 

Второй замечательный предел

 

Часто если непосредственное нахождение предела какой – либо функции представляется сложным, то можно путем преобразования функции свести задачу к нахождению замечательных пределов.

Кроме трех, изложенных выше, пределов можно записать следующие полезные на практике соотношения:

 

 

 

Пример. Найти предел.

 

Пример. Найти предел.

 

Пример. Найти предел.

 

 

Пример. Найти предел.

 

 

Пример. Найти предел.

 

 

Пример. Найти предел .

 

Для нахождения этого предела разложим на множители числитель и знаменатель данной дроби.

 

x2 – 6x + 8 = 0; x2 – 8x + 12 = 0;

D = 36 – 32 = 4; D = 64 – 48 = 16;

x1 = (6 + 2)/2 = 4; x1 = (8 + 4)/2 = 6;

x2 = (6 – 2)/2 = 2 ; x2 = (8 – 4)/2 = 2;

Тогда

 

Пример. Найти предел.

 

домножим числитель и знаменатель дроби на сопряженное выражение: =

= .

 

 

Пример. Найти предел.

 

 

Пример. Найти предел .

 

Разложим числитель и знаменатель на множители.

x2 – 3x + 2 = (x – 1)(x – 2)

x3 – 6x2 + 11x – 6 = (x – 1)(x – 2)(x – 3), т.к.

 

 

x3 – 6x2 + 11x – 6 x - 1

x3 – x2 x2 – 5x + 6

- 5x2 + 11x

- 5x2 + 5x

6x - 6

6x - 6 0

 

x2 – 5x + 6 = (x – 2)(x – 3)

Тогда

 

Пример. Найти предел.

 

 

- не определен, т.к. при стремлении х к 2 имеют место различные односторонние пределы -∞ и +∞.

 

 

Комплексные числа

 

Определение. Комплексным числом zназывается выражение , где a и b – действительные числа, i – мнимая единица, которая определяется соотношением:

При этом число a называется действительной частью числа z (a = Re z), а b- мнимой частью (b = Im z).

Если a =Re z =0, то число z будет чисто мнимым, если b = Im z = 0, то число z будет действительным.