УСЛОВИЯ ЗАЛЕГАНИЯ НЕФТИ, ГАЗА И ВОДЫ В НЕФТЯНЫХ И ГАЗОВЫХ ЗАЛЕЖАХ

Нефть и газ в нефтяных и газовых залежах насыщают пустоты между зернами, трещины и каверны пород, слагаю­щих пласты. Большинство нефтегазовых месторождений приурочены к осадочным породам — хорошим коллекторам не­фти (пески, песчаники, конгломераты, трещиноватые и ка­вернозные известняки и доломиты). Иногда нефть обнаружи­вают в трещинах и порах изверженных пород, но эти скоп­ления обычно не имеют промышленного значения.

Горные породы, слагающие нефтяные и газовые место­рождения, в зависимости от их свойств играют разную роль. Одни из них, имеющие большое число крупных пор, — резервуары нефти и газа (нефтяные и газовые залежи). Поро­ды, такие как глины, сланцы и другие, практически непрони­цаемые для пластовых газожидкостных смесей, — естественные покрышки продуктивных коллекторов нефти и газа, спо­собствующие их накоплению. Промышленная ценность мес­торождения определяется не только его размерами, но и в значительной степени физическими свойствами коллекторов, пластовых жидкостей и газов, а также видом и запасом пла­стовой энергии.

Нефтяные и газовые залежи располагаются в верхних ча­стях структур, образуемых пористыми породами, перекрыты­ми непроницаемыми пластами (так называемыми ловушка­ми). Естественные резервуары нефти и газа по происхожде­нию и геометрической форме могут быть самыми различны­ми. Простейшая структурная ловушка — антиклинальная склад­ка. В зависимости от условий залегания и количественного соотношения нефти и газа залежи подразделяются на следу­ющие: 1) чисто газовые; 2) газоконденсатные; 3) газонефтя­ные (с газовой шапкой); 4) нефтяные без газовой шапки с растворенным в нефти газом. Нефть, газ и вода распределя­ются в залежи соответственно своим плотностям.

Как правило, в продуктивной зоне пласта кроме нефти и газа содержится также вода, хотя продукцией скважин при разработке этого пласта может быть безводная нефть. Вода, по всей вероятности, осталась в нефтяной и газовой частях пластов со времени образования залежи. Породы нефтяных и газовых пластов отлагались в водоемах. В процессе накоп­ления нефть и газ не смогли полностью вытеснить воду из пористой среды. В значительной мере это объясняется гидрофильностью большинства пород, слагающих продуктивные пласты. Вода частично остается в порах пласта в виде тон­чайших пленок, капелек в местах контакта зерен породы, а также в субкапиллярных порах. Эту капиллярно удерживае­мую воду называют связанной. Иногда ее именуют также погребенной, остаточной, реликтовой и т. д. По данным С.Л. Закса, исследовавшего породы значительного числа не­фтяных и газовых месторождений СССР, количество связан­ной воды, выраженной в процентах от суммарной емкости пор, может колебаться от долей процента до 70 % и в боль­шинстве коллекторов составляет 20 — 30 %. Установлено, что чем меньше проницаемость пород, тем больше остаточная водонасыщенность. С увеличением количества глинистого ма­териала в породе содержание связанной воды также растет. Изучение свойств и происхождения связанной воды может помочь решению вопроса генезиса нефтяных месторожде­ний; количество связанной воды необходимо знать для оцен­ки абсолютных запасов нефти, а качество — для правильного выбора нагнетаемой воды при искусственном заводнении нефтяного пласта. Состав нагнетаемой воды должен быть подобран так, чтобы при контакте ее со связанной водой в пласте не выпал осадок, способный частично или полностью закрыть поровые каналы.

Раздел между нефтью и водой в нефтяных месторождени­ях и между газом и водой в чисто газовых представляет собой переходную зону от водной части пласта к нефтяной или газовой. Вследствие капиллярного подъема воды в порах «зеркала вод» в пластах не существует и содержание воды по вертикали постепенно изменяется от 100 % в водоносной части до остаточной водонасыщенности в верхних частях залежи. Мощность этой переходной области может достигать 3 — 5 м и более. Так как пористость и проницаемость коллек­торов в пределах одной и той же залежи изменяются в широких пределах, содержание связанной воды, а следова­тельно, нефте- и газонасыщенность также неодинаковы на различных участках залежи. Водо- и нефтенасыщенность по­род определяют по результатам анализа кернов, выбуренных из пласта при его вскрытии, и по геофизическим данным.

Жидкости и газы в пласте находятся под давлением. От пластового давления зависят запас энергии и свойства жидко­стей и газов в пластовых условиях. По давлению, наряду с другими параметрами, определяют запасы газа в залежи, дебит нефтяных и газовых залежей и условия эксплуатации залежей.

Опыт показывает, что начальное пластовое давление (изме­ренное до начала эксплуатации), в Па, зависит от глубины залежи и приближенно может быть определено по формуле [9]

α— переводной коэффициент, Па/м; Н — глубина залегания пласта, м.

Обычно истинное пластовое давление больше или мень­ше давления, вычисленного по формуле (1.1). На практике переводной коэффициент составляет, как правило, α = (0,8÷1,2) 104 Па/м.

В газовой залежи пластовое давление одинаково по всей площади или изменяется незначительно, а в нефтяной при значительных углах падения пластов рпл в различных частях залежи неодинаково: на крыльях — максимальное, в сводо­вой части — минимальное (рис. 1.1).

Таким образом, на истинные давления в залежи наклады­ваются соответствующие изменения давления по площади, обусловленные изменением глубины залегания пласта.

Поэтому удобнее относить пластовое давление в залежи к какой-либо одной плоскости. Часто за такую плоскость принимают уровень моря или условную плоскость первоначального поло­жения водонефтяного контакта. Давление в пласте, отнесен­ное к этой условной плоскости, называют приведенным. Если пластовые давления в скв. 1 и 2 равны соответственно рх и р2, то приведенные давления в них, отнесенные к первона­чальному уровню водонефтяного контакта, составят

где х1 и х2 — расстояния от забоев скважины до уровня водонефтяного контакта; ρ — плотность жидкости в пласте; gускорение свободного падения.

Изменения пластового давления регистрируются при эксп­луатации нефтяных и газовых месторождений. Это дает воз­можность судить о процессах, происходящих в пласте. На основании данных о динамике изменения пластовых давле­ний разрабатываются мероприятия для увеличения эффек­тивности эксплуатации месторождения.

Рис. 1.1. Изменение пластового давления в зависимости от глубины зале­гания месторождения

С ростом глубины залегания пластов повышается и темпе­ратура. Расстояние по вертикали, на котором температура горных пород закономерно повышается на 1 °С, называется геотермической ступенью. Среднее значение геотермической ступени 33 м; для различных месторождений ее величина неодинакова.

Свойства нефти, воды и газа на поверхности сильно отли­чаются от их свойств в пластовых условиях, где они находят­ся при сравнительно высоких давлениях и температурах. Свойства нефти, воды и газов в пластовых условиях влияют на закономерности их движения в пористой среде.

 

СОСТАВ И СВОЙСТВА НЕФТИ

Впервые была изучена пенсильванская нефть Северо-Американского нефтеносного бассейна, в которой немецкий уче­ный К. Шорлеммар (1834— 1892) обнаружил предельные угле­водороды метанового ряда. Исчерпывающее объяснение стро­ения углеводородов дал А.М. Бутлеров (1861), а основополож­ником науки о нефти принято считать Д.И. Менделеева.

Исследования показали, что в нефтях содержится три боль­шие группы углеводородов: предельные, непредельные и аро­матические [5, 7, 9, 13].

Предельные — наиболее простые по строению, получив­шие свое название от самого простейшего из всех углеводо­родов — метана. Часто такие углеводороды называют мета­новыми, а в химии их называют алканами. Структурная фор­мула метана напоминает простейшее из живых существ — амебу. Только у метана вместо ядра — атом углерода, а протоплазму образуют 4 атома водорода. Каждый следующий углеводород имеет на 1 атом углерода больше, т. е. структур­ная формула алканов имеет вид: СnН2n+2. Как бы не вытяги­валась цепочка углеводородов, она всегда будет окружена водородной оболочкой. В нефти встречаются почти все чле­ны этого ряда: СН4 —С4Н10 — газы; С5Н12 —С17Н36 — жидко­сти; начиная с С18Н38 — могут находиться в нефти в виде кристаллов и входят в состав парафинов. Отсюда еще одно название углеводородов — парафиновые. Названия первых 10 членов по порядку: метан, этан, пропан, бутан, пентан, гексан, гептан, октан, нонан, декан. Начиная с четвертого угле­водорода — бутана, все имеют несколько разновидностей — изомеров. Молекулы их построены по-разному, хотя хими­ческая формула одинакова. Если основной член ряда имеет вид простой цепочки, то у изомеров цепь ветвится. Различа­ясь по структуре, по прочности связей, изомеры отличаются и свойствами. Например, температура плавления и кипения у них ниже, чем у нормальных. Лучшие бензины для современ­ных бесшумных автомобилей состоят не из истинных бензи­нов, а из их изомеров. Следует отметить, что многие изоме­ры еще не изучены, и в первую очередь потому, что, как подсчитали ученые, 11-й член ряда может иметь 159 изоме­ров, 18-й (октодекан) — 60523, и т. д. Постоянный интерес к изучению физико-химических свойств таких углеводородов объясняется не только желанием создать новые сорта топли­ва, но и тем, что некоторые изомеры своим строением напо­минают органические вещества.

Непредельные — это циклические насыщенные углеводо­роды со структурной формулой СпН2п. В их молекулах «не хватает» двух атомов водорода. Такие углеводороды называ­ют также нафтеновыми или алкенами. В природных нефтях их нет, они образуются при ее вторичной переработке. У нафтенов может быть не одно, а несколько колец — отсюда названия: моно-, би- или полициклические со структурными формулами CnH2n 2, CnH2n_4. Еще одно название углеводородов этой группы — циклопарафины — происходит от способнос­ти их колец удерживать при себе цепочку метановых углево­дородов. Это свойство определяет и другие: большая плот­ность, чем у метановых, выше температура кипения и плав­ления, легко взаимодействуют с галогенами, присоединяют кислород. В нормальных условиях — это всегда жидкости.

Ароматические углеводороды получили свое название из-за четко выраженных (не всегда приятных) запахов. По-гречески «арома» означает пахучее вещество. Структурная формула CnH2n-m, где т — четные числа. Представлены такие углеводороды бензолом С6Н6 и его производными (гомолога­ми) . Ароматические углеводороды сильно недонасыщены во­дородом, однако химически малоактивны. В нормальных ус­ловиях — это жидкости, имеющие очень низкую температу­ру застывания: от —25 до —88 °С.

В зависимости от преобладания в нефти одного из трех представителей групп углеводородов в количестве более 50 % нефти именуются метановыми, нафтеновыми, ароматически­ми. Если к доминирующему присоединяется другой углеводород в количестве не менее 25 %, то им дают комбинирован­ное название, например метанонафтеновые.

Приведенная классификация нефтей по углеводородному составу позволяет дать определение нефти: нефть представ­ляет собой раствор чистых углеводородов и гетероатомных органических соединений (т. е. углеводородов, содержащих в молекуле атомы кислорода или азота, или серы) друг в друге.

Углеводородный состав нефти является важной характери­стикой, но целесообразно ввести еще два — элементарный и фракционный.

Несмотря на многообразие углеводородов, элементарный состав нефти колеблется в небольших пределах (%): углерод — 83 — 87, водород — 11 — 14, смолисто-асфальтовые вещества — 2 — 6. Смолисто-асфальтовые вещества представляют собой высокомолекулярные органические соединения, содержащие уг­лерод, водород, серу, азот и металлы. К ним относятся: нейт­ральные смолы, растворимые в бензинах; асфальтены, не ра­створимые в петролейном эфире, но растворимые в горячем бензоле; карбены, растворимые в сероуглероде; карбоиды, во­обще не растворимые. При сгорании нефти получается зола (сотые доли процента), состоящая из оксидов кальция, магния, железа, алюминия, кремния, натрия и ванадия. Сера в нефти находится в виде сероводорода, меркаптанов, сульфанов, иног­да—в свободном виде. Сера и ее соединения активно взаи­модействуют с металлами, вызывая сильную коррозию. Обна­руживают их по резкому запаху и действию на растворы свинцовых солей. По содержанию серы нефти делят на следу­ющие группы: несернистые (менее 0,2 %), малосернистые (0,2 — 1,0 %), сернистые (1,0 — 3,0 %), высокосернистые (более 3 %). Азот, как примесь безвредная и инертная, почти не контроли­руется анализами; его доля обычно не превышает 1,7 %. В заключение можно сказать, что в нефтях обнаруживают более половины таблицы Менделеева, причем элементарный состав нефти полностью не изучен.

Фракционный состав нефти определяется при ее перегон­ке. Существует несколько способов так называемой прямой гонки, но суть их одна. Любой жидкий углеводород имеет свою температуру кипения, т. е. температуру, выше которой он испаряется. Например, бензол С6Н6 кипит при 80 °С, а толуол С7Н8 — при 111 °С. При перегонке типичной нефти можно получить: 31 % бензина (углеводороды С4 — С10), 10 % керосина (Сп — С12), 15 % дизельного топлива (С13 — С20), 20 % смазочных масел (С21 — С40), 24 % остатка — мазута (с С40 и выше). Таким образом, из сложной многокомпонентной нефти получаются новые вещества (фракции), более близкие по угле­водородному составу и, следовательно, по свойствам.

Приведем основные физические свойства нефтей: плот­ность, вязкость, сжимаемость и др.

Плотность нефти — это масса единицы объема, при тем­пературе 20 °С и атмосферном давлении колеблется от 700 до 1040 кг/м3. Нефть с плотностью ниже 900 кг/м3 называют легкой, выше — тяжелой. Мазут имеет плотность от 900 до 990 кг/м3, керосин - 800 - 840 кг/м3, бензины 700 - 800 кг/м3, газовые конденсаты — 650 — 720 кг/м3. Плотность пластовой нефти всегда ниже плотности дегазированной нефти.

Вязкость — свойство любой жидкости, в том числе и нефти, оказывать сопротивление перемещению ее частиц от­носительно друг друга, т. е. характеризует подвижность жид­кости. Существует динамическая и кинематическая вязкость. Единица динамической вязкости — паскаль-секунда (Па∙с). Вязкость нефтей обычно намного ниже 1 Пас, поэтому на практике часто пользуются внесистемными единицами — пуаз (П) и сантипуаз (сП): 1 П = 01Па∙с, 1 сП = 10 -3Пa∙c.

С понижением температуры вязкость увеличивается, с по­вышением — уменьшается. Динамическая вязкость воды при 20 °С составляет около 1 сП, вязкость нефти в зависимости от ее характеристики и температуры может изменяться от 1 до нескольких десятков сантипуазов, а у отдельных нефтей вязкость достигает 100, даже 200 сП (0,1 —0,2 Па∙с).

Объемный коэффициент пластовой нефти — это отноше­ние объема нефти в пластовых условиях к объему дегазиро­ванной нефти:

где Упл — объем нефти в пластовых условиях; Удег — объем этой же нефти при атмосферном давлении и температуре 20 ° С после дегазации.

Известны месторождения, для которых объемный коэф­фициент нефти достигает 3,5 и более. Для пластовой воды объемные коэффициенты составляют 0,99— 1,06.

С помощью объемного коэффициента можно определить «усадку» нефти — уменьшение объема пластовой нефти при извлечении ее на поверхность:

Сжимаемость нефти — это изменение объема нефти при изменении давления. Характеризуется коэффициентом сжи­маемости (βн, который представляет относительное изменение объема, приходящееся на единицу изменения давления:

где ΔV — изменение объема нефти, м3; Voисходный объем нефти, м3; Ар — изменение давления, Па.

Коэффициент сжимаемости нефти, не содержащей раство­ренный газ, равен 4∙10 -10 - 7∙10 -10 1/Па (4∙10 -5 —7∙10 -5 1/ад).

Давлением насыщения нефти газом называется давление газа, находящегося в термодинамическом равновесии с плас­товой нефтью. Если давление, оказываемое на пластовую нефть, становится ниже давления насыщения, то из нефти начинает выделяться растворенный газ. Нефть, находящаяся в пласте при давлении выше давления насыщения, называет­ся недонасыщенной. Если давление насыщения равно пласто­вому давлению, то пластовая нефть называется насыщенной.

Газовый фактор. Газовым фактором называется количе­ство газа (в м3), приведенное к атмосферному давлению, приходящееся на 1 т нефти. Для нефтяных месторождений России газовый фактор колеблется от 20 до 1000 м3/т (в среднем он составляет около 100 м3/т).