Численное решение систем нелинейных уравнений

Постановка задачи

Дана система линейных уравнений

(1)

Введём обозначения: вектор - вектор аргументов:

Аналогично вектор функций

Тогда систему 1 можно переписать в виде:

Система линейных уравнений в общем виде неразрешима. Поэтому мы будем рассматривать только численные методы решения системы линейных уравнений.

 

Метод Ньютона

Для уравнения имеет вид:

По анологии метод Ньютона для системы линейных уравнений

где - вектор аргументов на -ом шаге итерации

- значения вектора функций (системы уравнений ) при

- обратная матрица Якоби

- матрица, Якоби-матрица, состоящая из частных производных

Вполне естественно очевидно, что формулу Ньютона можно применять в том случае, когда Якоби-матрица неособенная, невырождённая, то есть .

Пример:

Дано:

Матрица Якоби

Превоначальная оцнка

1)

2)

3)

- = - =

и так далее

Результаты итераций лучше всего сводить в таблицу

3,4 0,097 2,2 0,076
3,497   2,276  
       

Прекращаем вычисления, когда - заданная точность.

Как и в любых численных методах встают следующие задачи: о сходимости метода и о выборе начального значения.

 

Сходимость метода Ньютона

Вопросами сходимости метода Ньютона занимались такие учёные, как Виллус, Стёпин, Островский, Канторович и другие. Мы же будем рассматривать сходимость, единственность корня и выбор начального условия по Канторовичу. При рассмотрении этих характеристик метода ипользуются понятия нормы. Поэтому прежде дадим определения :

-нормой - называется максимальная сумма модулей элементов по строкам.

-нормой - называется максимальная сумма модулей элементов по столбцам.

-нормой - нызывается квадратный корень из суммы квадратов модулей элементов матрицы

Пример:

Для оценки матриц, используемых в методе Ньютона для нелинейных систем, будем использовать -нормы, а именно

 

Теорема о существовании корней и сходимости процесса Ньютона

Пусть дана нелинейная система уравнений

,

где - вектор-функция определена и непрерывна вместе со своими частными производными первого и второго порядков в некоторой области . Положим, что - есть точка, лежащая в вместе со своей замкнутой -окрестностью. При этом выполняются следующие условия:

1) матрица Якоби при имеет обратную функцию

2)

3)

4) постоянные удовлетворяют неравенству

Тогда процесс Ньютона при начальном приблежении сходится к решению - есть решение такое, что

Для проверки условия даёт оценку расходимости начального и первого приблежения.