Основные характеристики разветвленной электрической цепи.

Электрические цепи, основные понятия и определения.

 

Электрической цепью называется совокупность устройств и объектов, предназначенных для создания, транспортировки, потребления электрической энергии.

В электрических цепях следует выделить источники электрической энергии и приемники, которые соединяются между собой каналами связи или соединительными проводами.

Источникомэлектрической энергии называетсяустройство, в котором, какой-либо вид энергии (механическая, световая, химическая) преобразуется в электрическую. Источниками электрической энергии являются генераторы, аккумуляторы, солнечные батареи и пр.

Например, механическая энергия паровых турбин либо гидротурбин на электростанциях преобразуется в электрическую, в аккумуляторах – химическая энергия преобразуется в электрическую.

Источник электроэнергии характеризуется электродвижущей силой ЭДС.

Приемником электрической энергии называется устройство, в котором, электрическая энергия преобразуется в другой вид энергии. Приемниками электрической энергии являются двигатели, нагревательные элементы и пр.

Электромагнитные процессы в электрической цепи могут быть описаны с помощью понятий электродвижущей силы e(t), тока i(t), напряжения u(t) и др. В общем случае эти параметры электрической цепи являются функцией времени и их величины в произвольным момент времени называются мгновенными значениями.

Электрические цепи в которых ток I, напряжение U, электродвижущая сила E не являются функцией времени, называются цепями постоянного тока.

Одной из характеристик электрической цепи является потенциал .

 

Основные элементы электрической цепи.

 

Любое электротехническое устройство может быть описано с помощью электрических схем, которые формируются с помощью идеализированных элементов. Они могут быть пассивными и активными. Пассивные элементы электрической цепи потребляют электрическую энергию, а активные – генерируют ее.

 

Пассивные элементы.

К пассивным элементам относятся резистивный, индуктивный и емкостной элементы.

 

Резистивный элемент

Резистивным элементом называется элемент, в котором электрическая энергия преобразуется в тепловую или в другой вид полезной энергии.

Обозначение резистивного элемента в электрических схемах приведено на рис. 1.1.

 
 

 


Количественной характеристикой резистивного элемента является сопротивление r, R, либо величиной обратной сопротивлению, называемый проводимость . В системе СИ сопротивление измеряется в Омах [Ом], а проводимость - в Сименсах [См].

Функциональная зависимость между током i и напряжением u на зажимах резистивного элемента описывается законом Ома:

, .

Эта зависимость может быть оценена с помощью вольтамперной характеристика (ВАХ) (рис.1.2). В общем случае сопротивление резистивного элемента может быть функцией напряжения или тока.

 

Вольтамперная характеристика (ВАХ) имеет вид прямой линии, когда сопротивление резистивного элемента r не зависит от тока i и напряжения u, и нелинейная, когда r является функциональной зависимостью либо i либо u.

Резистивный элемент характеризуется мощностью.

Мгновенная мощность:

.

Средняя мощность, потребляемая резистивным элементом за промежуток времени T равна:

.

Для цепей постоянного тока средняя мощность определяется выражением:

.

Индуктивный элемент

Индуктивным элементомназывается элемент, в котором электрическая энергия преобразуется в энергию магнитного поля. Преобразования в другие виды энергии не происходит.

Обозначение индуктивного элемента в электрических схемах приведено на рис. 1.3.

 
 

 

 


Количественной характеристикой индуктивного элемента является индуктивность L. В системе СИ индуктивность измеряется в Генри [Гн].

Функциональная зависимость между напряжением u и током i может быть получена с помощью закона Фарадея, согласно которому:

,

где еL – ЭДС самоиндукции,

– потокосцепление катушки,

w - число витков,

Ф – поток магнитной индукции:

.

В системе СИ потокосцепление и магнитный поток измеряются в Веберах [Вб].

Тогда, функциональная зависимость между током i и напряжением u на зажимах индуктивного элемента описывается:

или .

Свойства индуктивного элемента оценивается с помощью вебер-амперной характеристики (ВбАХ) (рис.1.4).

 


 

Вебер-амперная характеристика имеет вид прямой линии, когда индуктивность индуктивного элемента L не является функцией тока i и потокосцепления , и нелинейная, когда L является функциональной зависимостью либо i либо .

Энергия, запасенная в магнитном поле индуктивности равна:

.

Для цепей постоянного тока, где , сопротивление индуктивного элемента представляет собой идеальный проводник, сопротивление которого равно нулю.

 

Емкостной элемент

Емкостным элементомназывается идеализированный элемент, в котором электрическая энергия преобразуется в энергию электрического поля. Преобразования электрической энергии в другие виды энергии не происходит.

Обозначение емкостного элемента в электрических схемах приведено на рис. 1.5.

 
 

 

 


Количественной характеристикой емкостного элемента является емкость С. В системе СИ емкость измеряется в Фарадах [Ф].

Функциональная зависимость между током i и напряжением u на зажимах емкостного элемента:

, ,

где - электрический заряд.

Свойства емкостного элемента могут быть оценены с помощью кулон-вольтной характеристики (рис.1.6).

 
 

 

 


Кулон-вольтная характеристика имеет вид прямой линии, когда емкость емкостного элемента С не зависит от напряжения uC и электрического заряда q, и нелинейная, когда С является функциональной зависимостью либо uCлибо q.

Ток емкости характеризует скорость накопления заряда. Если ток больше нуля, то происходит накопление заряда, если меньше нуля – разряд. Для постоянного тока напряжение на зажимах емкости не изменяется во времени, следовательно, ток емкости равен нулю, а сопротивление емкости постоянному току бесконечно велико.

Энергия электрического поля, запасенная емкостью равна:

.

Активные элементы.

К активным элементам электрической цепи относятся те элементы, которые содержат в своей структуре источники электрической энергии (генераторы, аккумуляторы, солнечные батареи и т. п.)

Характеристикой источников электрической энергии является ЭДС e(t) (рис.7.1) и внутреннее сопротивление rв.

ЭДС источника определяется разностью потенциалов на зажимах источника при отсутствии тока .

 

 

Рассмотрим основные характеристики источника электрической энергии на примере простой цепи постоянного тока (рис. 8.1), включающую в себя источник постоянной ЭДС Е с внутренним сопротивлением rв, соединительных проводов и приемника – лампы накаливания.

 

 

В электрической цепи протекает ток I и напряжение U на зажимах источника меньше ЭДС источника на величину падения напряжения Uв на внутреннем сопротивлении источника: .

В этом случае вольтамперные характеристики источника, при , будут иметь вид прямых линий, изображенных на рис. 9.1. Ее называют внешней характеристикой.

 
 

 

 


Наклон характеристики определяется величиной rв. С увеличением rв, наклон характеристики увеличивается.

При , имеем режим короткого замыкания .

При ВАХ источника параллельна оси токов (рис. 10.1.б). Такой источник называют идеальным источником напряжения (рис. 10.1.а).

 
 

 

 


Независимо от тока в цепи, напряжение на зажимах такого источника всегда равно ЭДС Е.

Исходная электрическая цепь может быть описана с помощью схемы, представленный на рис. 11.1. Источник представлен эквивалентной схемой в виде последовательного соединения источника напряжения и внутреннего сопротивления rв. Приемник в виде сопротивления нагрузки , включающий сопротивление лампы и сопротивление соединительных проводов . Источник ЭДС и приемник соединены идеальным проводником, сопротивление которого равно нулю(а = 1, b = 2).

 
 

 

 


Мощность, генерируемая источником напряжения равна . Она расходуется на внутреннее сопротивление источника и на сопротивления приемника и соединительных проводов . Т.е.

.

Из выражения , следует . Откуда . Этому выражению соответствует электрическая схема, изображенная на рис 12.1.

 

 

Где - , - проводимости внутреннего сопротивления и нагрузки.

Величина будет уменьшаться при уменьшении и при ток . В данном случае имеем идеальный источник, называемый источником тока (рис. 13.1.а), в цепи с которым независимо от ток всегда будет постоянным. Его ВАХ имеет вид (рис. 13.1.б).

 
 

 


Мощность, генерируемая источником тока равна .

Таким образом, источник электрической энергии может быть представлен как в виде двух эквивалентных схем с источником напряжения (рис. 14.1.а) и с источником тока (рис. 14.1.б). Обе схемы источников электрической энергии являются эквивалентными.

 

 

Режимы работы электрической цепи определяются на пересечении ВАХ источника и приемника (рис. 15.1).

 

 

 


Напряжение на зажимах источника равно напряжению на нагрузке.

Для источника напряжения, при изменении сопротивления нагрузки, меняется величина тока, а напряжение на зажимах источника остается постоянным (рис. 16.1).

 

Для источника тока, при изменении сопротивления нагрузки, изменяется напряжение на зажимах источника, а ток остается неизменным (рис. 17.1).

 
 

 

 


Для источников электрической энергии также существует понятия переменных источников напряжения и тока. В источниках напряжения независимо от величины и характера сопротивления нагрузки напряжение на зажимах u(t) всегда неизменно, а для источников переменного тока неизменным остается ток iк(t).

Внутреннее сопротивление может представлять электрическую цепь, в которой могут находиться пассивные элементы (r, L, C).

 

1.2. Разветвлённые электрические цепи, их основные характеристики и уравнения, описывающие состояние цепи.

Основные характеристики разветвленной электрической цепи.

Процессы в любом электротехническом устройстве удобно рассматривать с помощью электрических схем, сформированных из идеализированных элементов, которые характеризуются схемой соединения элементов (геометрией, топографией). Основными характеристиками электрических схем являются ветвь, узел, контур. В качестве примера на рис. 18.1 приведена электрическая схема.

 

 


Ветвьназывают часть схемы, состоящую из последовательно соединённых элементов.

Число ветвей электрической цепи принято обозначать «b». В приведенной схеме – b = 6. Вдоль каждой ветви протекают одинаковые токи i1, i2, i3, i4, i5, i6,. Элементы, входящие в одну ветвь, рекомендуется обозначать одинаковыми индексами. Например, в третью ветвь входят резистивный элемент r3, индуктивность L3, емкость С3 и источник питания e3.

Узлом называется точка, в которой соединяются три или более ветвей.

Число узлов электрической цепи принято обозначать «y». В приведенной

Схеме – y = 4. Например, к первому узлу 1 подсоединены первая, третья и пятая ветви.

Несколько ветвей могут образовывать замкнутый контур. При обходе контура ветвь и узел встречаются один раз.

Выделяют (независимые) главные контуры. Число независимых контуров «m» равно m = b – (y – 1). В приведенной схеме независимых контуров m = 3. Такими контурами могут быть: І контур, в который входят первая, четвертая и пятая ветви, ІІ контур - вторая, четвертая и шестая ветви, ІІІ контур – третья, пятая и шестая ветви.

На схеме указывают положительные направления токов в ветвях и направления обхода контуров. Эти направления выбираются произвольно.

Геометрию (топологию) электрических схем удобно оценивать с помощью графа электрической цепи. На рис. 19.1 приведен граф электрической схемы рис. 18. Граф характеризуется ветвями, узлами, контурами. Ветви графа представляют собой отрезки линии.

 

 

 

 

Если в ветви указывают направление, то граф называют направленным. Направление графа характеризует положительное направление тока в ветви или напряжения.

Часть графа называют подграфом.

Дерево – часть графа (подграф), состоящий из ветвей, соединяющих все узлы, но не образующих замкнутых контуров. Примеры деревьев графа представ-лены на рис. 20.1.


Ветви связи называют ветви графа, не вошедшие в состав дерева графа. Такими являются первая, вторая и третья ветви.

Для каждого дерева существуют свои ветви связи, но их число неизменно и равно числу независимых контуров. С помощью ветвей связи удобно выделять независимые (главные) контуры. Независимый контурвключает в себя только одну ветвь связи и дополняется ветвями дерева, поэтому ветви дерева могут входить в несколько контуров.