Порядок расчета выпарной установки

 

· Определяется общее количество выпариваемой воды.

· Определяется количество экстрапара, отбираемого из первого корпуса при условии, что тепловая нагрузка равномерно распределена на все подогреватели.

· Распределяется нагрузка по корпусам, и определяются средние концентрации.

· Определяются температурные потери по корпусам:

а) гидродинамическая депрессия (обусловлена потерей давления пара на преодоление гидравлических сопротивлений);

б) гидростатическая депрессия (обусловлена разностью давлений в среднем слое кипящего раствора и на его поверхности);

в) температурная депрессия (обусловлена разностью температур кипения исходного и упаренного растворов).

· Распределяется по корпусам полезная разность температур, исходя из соотношений:

Q1:Q2:Q3=W1:W2:W3; K1:K2:K3=1:0,58:0,34.

· Определяются температуры кипения по корпусам, и составляется таблица температурного режима, вычисляются коэффициенты испарения, самоиспарения, коэффициенты при греющем паре
и растворе.

· Определяется количество греющего пара первого корпуса.

· Уточняется нагрузка по корпусам.

· Составляется тепловой баланс по корпусам.

· Определяются коэффициент теплопередачи, поверхность теплообмена. Производится конструктивный расчет аппарата с определением парового пространства, штуцеров и циркуляционной трубы для искусственной циркуляции.

· Определяется расход воды в конденсаторе.

· Рассчитываются производительность и мощность вакуум-насоса. Производительность обязательно рассчитывается по воздуху, содержащемуся в паре и воде; мощность максимальная (при
р2=0,3·105 Па).

· Производится расчет и выбор вспомогательного оборудования (теплообменников, конденсатоотводчиков, барометрического конденсатора, емкостей под исходный и конечный раствор, трубопроводов, насосов и др.) в зависимости от технологических условий.

Графическая часть включает: 1) технологическую схему выпарной установки с сопутствующим вспомогательным оборудованием; 2) чертеж основного аппарата (разрез греющей камеры, сепарирующего устройства).

Массообменные процессы

 

Процессы, сущностью которых является перенос вещества, называются массообменными процессами или диффузионными. Подобно теплопередаче массопередача представляет собой сложный процесс, включающий перенос вещества в пределах одной фазы, перенос через поверхность раздела фаз и его перенос в пределах другой фазы [1-5, 20, 40-69].

При анализе массообменных процессов исходят из условия состояния границы контакта фаз. По этому принципу подобные процессы подразделяют на массопередачу:

а) в системах со свободной границей раздела фаз (газ-жидкость, пар-жидкость, жидкость-жидкость);

б) в системах с неподвижной поверхностью контакта фаз (системы газ-твердое тело, пар-твердое тело, жидкость-твердое тело);

в) через полупроницаемые перегородки (мембраны).

Процессы массопередачи обычно обратимы, причем направление перехода вещества определяется концентрациями вещества в фазах и условиями равновесия. Предельным состоянием массообменных систем является достижение системой равновесия, при котором перенос вещества прекращается, т.е. в системе не происходит никаких видимых изменений.

Таким образом, знание равновесных концентраций распределяемого вещества позволяет определить направление процесса – из какой фазы в какую будет переходить вещество, и в определенной степени – скорость процесса. Как и в других процессах, движущая сила массообмена характеризует степень отклонения системы от состояния динамического равновесия. В пределах данной фазы вещество переносится от точки с большей концентрацией к точке с меньшей концентрацией. Поэтому в инженерных расчетах движущую силу выражают через разность концентраций.

Определить направление переноса и движущую силу процесса можно посредством равновесных зависимостей, которые могут быть представлены в виде графиков (диаграммы равновесия), таблиц, уравнений [82 – 87].

К процессам, для которых характерна свободная граница раздела фаз, относятся такие широко распространенные в технике процессы, как абсорбция, десорбция, перегонка и ректификация, жидкостная экстракция. В подобных процессах граница контакта фаз подвижна и определяется гидродинамической обстановкой.

Массообменные процессы со свободной границей раздела фаз по принципу участия фаз подразделяются на две группы:

а) процессы, в которых участвуют как минимум три вещества, т.е. распределяемое вещество переносится (извлекается) из одного носителя в другой носитель (абсорбция, десорбция, экстракция);

б) процессы, в которых вещества, составляющие фазы, участвуют в массообменных процессах и не могут рассматриваться как носители распределяемого вещества (перегонка, ректификация).

Поскольку на практике концентрация участвующих в процессе фаз может иметь разную размерность, то при проведении технологического расчета этому необходимо уделять особое внимание. Формулы для пересчета концентраций представлены в учебном пособии [6].

В большинстве случаев подобные процессы осуществляются в колонных аппаратах. Поэтому при проведении технологических расчетов массообменных аппаратов определяют их диаметр и высоту. Диаметр или сечение аппарата отражает его производительность, а высота – интенсивность протекающих в аппарате процессов. Обычно диаметр определяют из уравнения расхода, однако в этом случае возникает проблема с выбором скорости, которая оказывает свое влияние не только на диаметр, но и на высоту аппарата, на его гидравлическое сопротивление и величину брызгоуноса.

Для расчета высоты аппарата существует несколько методов, однако при этом следует различать два основных вида аппаратов (по принципу изменения в них концентрации в фазах) – аппараты с непрерывным контактом фаз и аппараты со ступенчатым контактом фаз. В обоих случаях расчет высоты основывается на общих кинетических закономерностях массобменных процессов и может выражаться различными способами: уравнением массопередачи, высотой единиц переноса и др.

К массообменным процессам с участием жидкой (газовой или паровой) и твердой фаз относят адсорбцию, ионный обмен, сушку, растворение, экстракцию из твердого тела, кристаллизацию. Особенностями этих процессов являются:

- нестационарность процесса;

- многообразие элементарных механизмов массопередачи в твердом теле.

В подобных системах основными стадиями процесса являются:

– перенос во внешней фазе (жидкости, газе или паре), который осуществляется конвективной и молекулярной диффузией;

– внутренний перенос (в твердой фазе), который осуществляется посредством диффузии в твердом теле, конвективного переноса, свободной и кнудсеновской диффузии, поверхностной диффузии и термодиффузии.

Как уже говорилось выше, расчет массообменных аппаратов сводится к определению поверхности контакта фаз и геометрических размеров аппарата. Порядок расчета типовых процессов приведен ниже.