Курить вредно, дышать вредно, жить вредно 2 страница. 78. Viswanathan A., Liu J., Doetsch P.W, (1999) E

78. Viswanathan A., Liu J., Doetsch P.W, (1999) E. coli RNA polymerase bypass of DNA base damage: Mutagenesis at the level of transcription. Ann. N. Y. Acad. Sci, 870, p. 386388.

79. Roy-Burman P., Roy-Burman S., Visser D.W. (1965) Incorporation of 5,6-dihydrouridine triphosphate into ribonucleic acid by DNA-dependent RNA polymerase. Biochem. Biophys. Res. Commun., 20, p. 291-297.

80. Zhang Q.-M., Sugiyama H., Miyabe I., Matsuda S., Saito I., Yonei S. (1997) Replication of DNA templates containing 5-formyluracil, a major oxidative lesion of thymine in DNA. Nucleic Acids Res., 25, p. 3969-3973.

81. Levy D.D., Teebor G.W. (1991) Site directed substitution of 5-hydroxymethyluracil for thymine in replicating<="" p="">

82. Boorstein R.J., Teebor G.W. (1988) Mutagenicity of 5-hydroxymethyl-2'-deoxyuridine to Chinese hamster cells. Cancer Res., 48, p. 5466-5470.

83. Guerniou V., Gasparutto D., Douki Т., Cadet J., Sauvaigo S. (2005) Enhancement of the in vitro transcription by T7 RNA polymerase of short DNA templates containing oxidative thymine lesions. C. R. Biol., 328, p. 794-801.

84. Василенко H.JI., Невинский Г.A. (2003) Пути накопления и репарации остатков дезоксиуридина. в ДНК клеток низших и высших организмов. Биохимия, 68, с. 165183.

85. Shapiro Д., Klein R.S. (1966) The deamination of cytidine and cytosine by acidic buffer solutions. Mutagenic implications. Biochemistry, 5, p. 2358-2362.

86. Lindahl Т., Nyberg B. (1974) Heat-induced deamination of cytosine residues in deoxyribonucleic acid. Biochemistry, 13, p. 3405-3410.

87. Frederico L.A., Kunkel T.A., Shaw B.R. (1990) A sensitive genetic assay for the detection of cytosine deamination: Determination of rate constants and the activation energy. Biochemistry, 29, p. 2532-2537.

88. Lindahl T. (1993) Instability and decay of the primary structure of DNA Nature, 362, p. 709-715.

89. Schuster H. (1960) The reaction of nitrous acid with deoxyribonucleic acid. Biochem. Biophys. Res. Commun., 2, p. 320-323.

90. Hayatsu H. (1976) Bisulfite modification of nucleic acids and their constituents. Prog. Nucleic Acid Res. Mol. Biol., 16, p. 75-124.

91. Bhagwat A.S. (2004) DNA-cytosine deaminases: From antibody maturation to antiviral defense. DNA Repair, 3, p. 85-89.

92. Shlomai J., Kornberg A. (1978) Deoxyuridine triphosphatase of Escherichia coli: Purification, properties, and use as a reagent to reduce uracil incorporation into DNA. J. Biol. Chem., 253, p. 3305-3312.

93. Wist E., Unhjem O., Krokan H. (1978) Accumulation of small fragments of DNA in isolated HeLa cell nuclei due to transient incorporation of dUMP. Biochim. Biophys. Acta, 520, p. 253-270.

94. Туе B.-K., Chien J., Lehman I.R., Duncan B.K., Warner H.R. (1978) Uracil incorporation: A source of pulse-labeled DNA fragments in the replication of the Escherichia coli chromosome. Proc. Natl Acad. Sei. U.S.A., 75, p. 233-237.

95. Myers C.E., Young R.C., Chabner B.A. (1975) Biochemical determinants of 5-fluorouracil response in vivo: The role of deoxyuridylate pool expansion J. Clin. Invest., 56, p. 1231-1238.

96. Ames B.N. (1999) Micronutrient deficiencies: A major cause of DNA damage. Ann. N. Y. Acad. Sei., 889, p. 87-106.

97. Duncan B.K., Miller J.H. (1980) Mutagenic deamination of cytosine residues in DNA. Nature, 287, p. 560-561.

98. Ванюшин Б.Ф. (2005) Метилирование ДНК ферментами как эпигенетический контроль генетических функций клетки. Биохимия, 70, с. 488-499.

99. Pfeifer G.P. (2006) Mutagenesis at methylated CpG sequences. Curr. Top. Microbiol. Immunol., 301, p. 259-281.

100. Shen J.-C., Rideout W.M., III, Jones P.A. (1992) High frequency mutagenesis by a DNA methyltransferase. Cell, 71, p. 1073-1080.

101. Karran P., Lindahl T. (1980) Hypoxanthine in deoxyribonucleic acid: Generation by heat-induced hydrolysis of adenine residues and release in free form by a deoxyribonucleic acid glycosylase from calf thymus. Biochemistry, 19, p. 6005-6011.

102. Ohtsuka E., Matsuki S., Ikehara M., Takahashi Y., Matsubara K. (1985) An alternative approach to deoxyoligonucleotides as hybridization probes by insertion of deoxyinosine at ambiguous codon positions. J. Biol. Chem., 260, p. 2605-2608.

103. Hill-Perkins M., Jones M.D., Karran P. (1986) Site-specific mutagenesis in vivo by single methylated or deaminated purine bases. Mutat. Res., 162, p. 153-163.

104. Wuenschell G.E., O'Connor T.R., Termini J. (2003) Stability, miscoding potential, and repair of 2'-deoxyxanthosine in DNA: Implications for nitric oxide-induced mutagenesis. Biochemistry, 42, p. 3608-3616.

105. Singer B., Kusmierek J.T. (1982) Chemical mutagenesis. Annu. Rev. Biochem., 51, p. 655-691.

106. Lawley P.D., Phillips D.H. (1996) DNA adducts from chemotherapeutic agents. Mutat. Res., 355, p. 13-40.

107. Gros L., Ishchenko A. A., Saparbaev M. (2003) Enzymology of repair of etheno-adducts. Mutat. Res., 531, p. 219-229.

108. Friedberg E.C., Walker G.C., Siede W., Wood R.D., Schultz R.A., Ellenberger T., DNA Repair and Mutagenesis. 2006, ASM Press: Washington, D.C. 1118 pp.

109. Rydberg B., Lindahl T. (1982) Nonenzymatic methylation of DNA by the intracellular methyl group donor S-adenosyl-L-methionine is a potentially mutagenic reaction. EMBO J., 1, p. 211-216.

110. Marnett L.J. (2000) Oxyradicals and DNA damage. Carcinogenesis, 21, p. 361-370.

111. Lawley P.D., Brookes P. (1963) Further studies on the alkylation of nucleic acids and their constituent nucleotides. Biochem. J., 89, p. 127-138.

112. Doublie S., Tabor S., Long A.M., Richardson C.C., Ellenberger T. (1998) Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 A resolution Nature, 391, p. 1998-01-15.

113. Fronza G., Gold B. (2004) The biological effects of N3-methyladenine. J. Cell. Biochem., 91, p. 250-257.

114. Boiteux S., Belleney J., Roques B.P., Laval J. (1984) Two rotameric forms of open ring 7-methylguanine are present in alkylated polynucleotides. Nucleic Acids Res., 12, p. 5429-5439.

115. Boiteux S., Laval J. (1983) Imidazole open ring 7-methylguanine: An inhibitor of DNA synthesis. Biochem. Biophys. Res. Commun., 110, p. 552-558.

116. Asagoshi K., Terato H., Ohyama Y., Ide H. (2002) Effects of a guanine-derived formamidopyrimidine lesion on DNA replication: Translesion DNA synthesis, nucleotide insertion, and extension kinetics. J. Biol. Chem., 277, p. 14589-14597.

117. Greer S., Zamenhof S. (1962) Studies on depurination of DNA by heat J. Mol. Biol., 4, p. 123-141.

118. Lindahl T., Nyberg B. (1972) Rate of depurination of native deoxyribonucleic acid. Biochemistry, ll,p.3610-3618.

119. Zoltewicz J.A., Clark D.F., Sharpless T.W., Grahe G. (1970) Kinetics and mechanism of . the acid-catalyzed hydrolysis of some purine nucleosides. J. Am. Chem. Soc., 92, p. 17411750.

120. Garrett E.R., Mehta P.J. (1972) Solvolysis of adenine nucleosides. I. Effects of sugars and adenine substituents on acid solvolyses. J. Am. Chem. Soc., 94, p. 8532-8541.

121. Shapiro R., Danzig M. (1972) Acidic hydrolysis of deoxycytidine and deoxyuridine derivatives: General mechanism of deoxyribonucleoside hydrolysis. Biochemistry, 11, p. 23-29.

122. O'Brien P.J., Ellenberger T. (2004) Dissecting the broad substrate specificity of human 3-methyladenine-DNA glycosylase. J. Biol. Chem., 279, p. 9750-9757.

123. Guillet M., Boiteux S. (2003) Origin of endogenous DNA abasic sites in Saccharomyces cerevisiae. Mol. Cell. Biol., 23, p. 8386-8394.

124. Atamna H., Cheung I., Ames B.N. (2000) A method for detecting abasic sites in living cells: Age-dependent changes in base excision repair. Proc. Natl Acad. Sci. U.S.A., 97, p. 686-691.

125. Lindahl T., Andersson A. (1972) Rate of chain breakage at apurinic sites in double-stranded deoxyribonucleic acid Biochemistry, 11, p. 3618-3623.

126. Takeshita M., Chang C.-N., Johnson F., Will S., Grollman A.P. (1987) Oligodeoxynucleotides containing synthetic abasic sites: Model substrates for DNA polymerases and apurinic/apyrimidinic endonucleases. J. Biol. Chem., 262, p. 1017110179.

127. Shearman C.W., Loeb L.A. (1977) Depurination decreases fidelity of DNA synthesis in vitro. Nature, 270, p. 537-538.

128. Goodman M.F., Cai H., Bloom L.B., Eritja R. (1994) Nucleotide insertion and primer extension at abasic template sites in different sequence contexts. Ann. N. Y. Acad. Sci., 726, p. 132-142.

129. Taylor J.-S. (2002) New structural and mechanistic insight into the A-rule and the instructional and non-instructional behavior of DNA photoproducts and other lesions. Mutat. Res., 510, p. 55-70.

130. Cuniasse P., Fazakerley G.V., Guschlbauer W., Kaplan B.E., Sowers L.C. (1990) The abasic site as a challenge to DNA polymerase. A nuclear magnetic resonance study of G, C and T opposite a model abasic site. J. Mol. Biol, 213, p. 303-314.

131. Gestl E.E., Eckert K.A. (2005) Loss of DNA minor groove interactions by exonuclease-deficient Klenow polymerase inhibits 06-methylguanine and abasic site translesion synthesis. Biochemistry, 44, p. 7059-7068.

132. Hogg M., Wallace S.S., Doublie S. (2004) Crystallographic snapshots of a replicative DNA polymerase encountering an abasic site. EMBOJ., 23, p. 1483-1493.

133. Fleck O., Schar P. (2004) Translesion DNA synthesis: Little fingers teach tolerance. Curr. Biol., 14, p. R389-R391.

134. Haracska L., Unk I., Johnson R.E., Johansson E., Burgers P.M.J., Prakash S., Prakash L. (2001) Roles of yeast DNA polymerases 5 and C, and of Revl in the bypass of abasic sites. Genes Dev., 15, p. 945-954.

135. Tomer G., Reuven N.B., Livneh Z. (1998) The p subunit sliding DNA clamp is responsible for unassisted mutagenic translesion replication by DNA polymerase III holoenzyme. Proc. Natl Acad. Sci. U.S.A., 95, p. 14106-14111.

136. Daube S.S., Tomer G., Livneh Z. (2000) Translesion replication by DNA polymerase 5 depends on processivity accessory proteins and differs in specificity from DNA polymerase p. Biochemistry, 39, p. 348-355.

137. Cai H., Bloom L.B., Eritja R., Goodman M.F. (1993) Kinetics of deoxyribonucleotide insertion and extension at abasic template lesions in different sequence contexts using HIV-1 reverse transcriptase. J. Biol. Chem., 268, p. 23567-23572.

138. Ling H., Boudsocq F., Woodgate R., Yang W. (2004) Snapshots of replication through an abasic lesion: Structural basis for base substitutions and frameshifts. Mol. Cell, 13, p. 751-762.

139. McCulloch S.D., Kunkel T.A. (2006) Multiple solutions to inefficient lesion bypass by T7 DNA polymerase. DNA Repair, 5, p. 1373-1383.

140. Avkin S., Adar S., Blander G., Livneh Z. (2002) Quantitative measurement of translesion replication in human cells: Evidence for bypass of abasic sites by a replicative DNA polymerase. Proc. Natl Acad. Sci. U.S.A., 99, p. 3764-3769.

141. Auerbach P., Bennett R.A.O., Bailey E.A., Krokan H.E., Demple B. (2005) Mutagenic specificity of endogenously generated abasic sites in Saccharomyces cerevisiae chromosomal DNA. Proc. Natl Acad. Sci. U.S.A., 102, p. 17711-17716.

142. Ravanat J.-L., Douki T., Cadet J. (2001) Direct and indirect effects of UV radiation on DNA and its components. J. Photochem. Photobiol, B63, p. 88-102.

143. Setlow R.B., Carrier W.L. (1966) Pyrimidine dimers in ultraviolet-irradiated DNAs. J. Mol. Biol, 17, p. 237-254.

144. Franklin W.A., Doetsch P.W., Haseltine W.A. (1985) Structural determination of the ultraviolet light-induced thymine-cytosine pyrimidine-pyrimidone (6-4) photoproduct Nucleic Acids Res., 13, p. 5317-5325.

145. Kan L.S., Voituriez L., Cadet J. (1992) The Dewar valence isomer of the (6-4) photoadduct of thymidylyl-(3'-5')-thymidine monophosphate: Formation, alkaline lability and conformational properties. J. Photochem. Photobiol., B12, p. 339-357.

146. Park H., Zhang K., Ren Y„ Nadji S., Sinha N. Taylor J.-S., Kang C. (2002) Crystal structure of a DNA decamer containing a cis-syn thymine dimer. Proc. Natl Acad. Sci. U.S.A., 99, p. 15965-15970.

147. Bailly V., Verly W.G. (1987) Escherichia coli endonuclease III is not an endonuclease but a p-elimination catalyst. Biochem. J., 242. p. 565-572.

148. Manoharan M., Mazumder A., Ransom S.C., Gerlt J.A., Bolton P.H. (1988) Mechanism of UV endonuclease V cleavage of abasic sites in DNA determined by carbon-13 labeling. J. Am. Chem. Soc., 110, p. 2690-2691.

149. Bailly V., Sente B., Verly W.G. (1989) Bacteriophage^ and Micrococcus luteus UV endonucleases are not endonucleases but P-elimination and sometimes p5-elimination catalysts. Biochem. J., 259, p. 751-759.

150. Demple B., Harrison L. (1994) Repair of oxidative damage to DNA: Enzymology and biology. Annu. Rev. Biochem., 63, p. 915-948.

151. Ischenko A.A., Saparbaev M.K. (2002) Alternative nucleotide incision repair pathway for oxidative DNA damage. Nature, 415, p. 183-187.

152. Fortini P., Dogliotti E. (2007) Base damage and single-strand break repair: Mechanisms and functional significance of short- and long-patch repair subpathways. DNA Repair, 6, p. 398-409.

153. Eisen J.A., Hanawalt P.C. (1999) A phylogenomic study of DNA repair genes, proteins, and processes. Mutat. Res., 435, p. 171-213.

154. Denver D.R., Swenson S.L., Lynch M. (2003) An evolutionary analysis of the helix-hairpin-helix superfamily of DNA repair glycosylases. Mol. Biol. Evol., 20, .p. 16031611.

155. Huffman J.L., Sundheim O., Tainer J.A. (2005) DNA base damage recognition and removal: New twists and grooves. Mutat. Res., 577, p. 55-76.

156. David S.S., Williams S.D. (1998) Chemistry of glycosylases and endonucleases involved in base-excision repair. Chem. Rev., 98, p. 1221-1261.

157. Stivers J.T., Jiang Y.L. (2003) A mechanistic perspective on the chemistry of DNA repair glycosylases. Chem. Rev., 103, p. 2729-2760.

158. Lindahl Т. (1974) An yV-glycosidase from Escherichia coli that releases free uracil from DNA containing deaminated cytosine residues. Proc. Natl Acad. Sei. U.S.A., 71, p. 36493653.

159. Krokan H., Wittwer C.U. (1981) Uracil DNA-glycosylase from HeLa cells: General properties, substrate specificity and effect of uracil analogs. Nucleic Acids Res., 9, p. 2599-2613.

160. Olsen L.C., Aasland R., Wittwer C.U., Krokan H.E., Heiland D.E. (1989) Molecular cloning of human uracil DNA glycosylase, a highly conserved DNA repair enzyme. EMBOJ.,8, p. 3121-3125.

161. Aravind L., Koonin E.V., The a/ßfold uracil DNA glycosylases: A common origin with diverse fates, in Genome Biol. 2000. p. research0007.

162. Varshney U., Hutcheon Т., van de Sande J.H. (1988) Sequence analysis, expression, and conservation of Escherichia coli uracil DNA glycosylase and its gene (ung). J. Biol. Chem., 263, p. 7776-7784.

163. Haug Т., Skorpen F., Kval0y K., Eftedal I., Lund H., Krokan H.E. (1996) Human uracil-DNA glycosylase gene: Sequence organization, methylation pattern, and mapping to chromosome 12q23-q24.1. Genomics, 36, p. 408-416.

164. Haug Т., Skorpen F., Lund H., Krokan H.E. (1994) Structure of the gene for human uracil-DNA glycosylase and analysis of the promoter function. FEBS Lett., 353, p. 180184.

165. Slupphaug G., Markussen F.-H., Olsen L.C., Aasland R., Aarsaether N., Bakke O., Krokan H.E., Heiland D.E. (1993) Nuclear and mitochondrial forms of human uracil-DNA glycosylase are encoded by the same gene. Nucleic Acids Res., 21, p. 2579-2584.

166. Lindahl Т., Ljungquist S., Siegert W., Nyberg В., Sperens B. (1977) DNA N-glycosidases: Properties of uracil-DNA glycosidase from Escherichia coli. J. Biol. Chem., 252, p. 3286-3294.

167. Kumar N.V., Varshney U. (1997) Contrasting effects of single stranded DNA binding protein on the activity of uracil DNA glycosylase from Escherichia coli towards different DNA substrates. Nucleic Acids Res., 25, p. 2336-2343.

168. Jiang Y.L., Stivers J.T. (2001) Reconstructing the substrate for uracil DNA glycosylase: Tracking the transmission of binding energy in catalysis. Biochemistry, 40, p. 7710-7719.

169. Warner H.R., Rockstroh P.A. (1980) Incorporation and excision of 5-fluorouracil from deoxyribonucleic acid in Escherichia coli. J. Bacteriol., 141, p. 680-686.

170. Регистр лекарственных средств России 2005, под ред. Г.Л. Вышковского.—М.: РЛС. 1440 с.

171. Dizdaroglu M., Karakaya A., Jaruga P., Slupphaug G., Krokan H.E. (1996) Novel activities of human uracil DNA TV-glycosylase for cytosine-derived products of oxidative DNA damage. Nucleic Acids Res., 24, p. 418-422.

172. Eftedal I., Guddal P.H., Slupphaug G., Volden G„ Krokan H.E. (1993) Consensus sequences for good and poor removal of uracil from double stranded DNA by uracil-DNA glycosylase. Nucleic Acids Res., 21, p. 2095-2101.

173. Bennett S.E., Sanderson R.J., Mosbaugh D.W. (1995) Processivity of Escherichia coli and rat liver mitochondrial uracil-DNA glycosylase is affected by NaCl concentration. Biochemistry, 34, p. 6109-6119.

174. Parikh S.S., Mol C.D., Slupphaug G., Bharati S., Krokan H.E., Tainer J.A. (1998) Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA. EMBOJ., 17, p. 5214-5226.

175. Zharkov D.O., Grollman A.P. (1998) MutY DNA glycosylase: Base release and intermediate complex formation. Biochemistry, 37, p. 12384-12394.

176. Porello S.L., Leyes A.E., David S.S. (1998) Single-turnover and pre-steady-state kinetics of the reaction of the adenine glycosylase MutY with mismatch-containing DNA substrates. Biochemistry, 37, p. 14756-14764.

177. Waters T.R., Gallinari P., Jiricny J., Swann P.F. (1999) Human thymine DNA glycosylase binds to apurinic sites in DNA but is displaced by human apurinic endonuclease 1. J. Biol. Chem., 274, p. 67-74.

178. Otterlei M., Warbrick E., Nagelhus T.A., Haug T., Slupphaug G., Akbari M., Aas P.A., Steinsbekk K., Bakke O., Krokan H.E. (1999) Post-replicative base excision repair in replication foci. EMBOJ., 18, p. 3834-3844.

179. Lu X., Bocangel D., Nannenga B., Yamaguchi H., Appella E., Donehower L.A. (2004) The p53-induced oncogenic phosphatase PPM1D interacts with uracil DNA glycosylase and suppresses base excision repair. Mol. Cell, 15, p. 621-634.

180. Nilsen H., Stamp G., Andersen S., Hrivnak G., Krokan H.E., Lindahl T., Barnes D.E. (2003) Gene-targeted mice lacking the Ung uracil-DNA glycosylase develop B-cell lymphomas. Oncogene, 22, p. 5381-5386.

181. Nilsen H., Haushalter K.A., Robins P., Barnes D.E., Verdine G.L., Lindahl T. (2001) Excision of deaminated cytosine from the vertebrate genome: Role of the SMUG1 uracil-DNA glycosylase. EMBOJ., 20, p. 4278-4286.

182. Di Noia J.M., Neuberger M.S. (2007) Molecular mechanisms of antibody somatic hypermutation. Annu. Rev. Biochem., 76, p. 1-22.

183. Cone R., Bonura T., Friedberg E.C. (1980) Inhibitor of uracil-DNA glycosylase induced by bacteriophage PBS2: Purification and preliminary characterization. J. Biol. Chem., 255, p. 10354-10358.

184. Bennett S.E., Schimerlik M.I., Mosbaugh D.W. (1993) Kinetics of the uracil-DNA glycosylase/inhibitor protein association: Ung interaction with Ugi, nucleic acids, and uracil compounds. J. Biol. Chem., 268, p. 26879-26885.

185. Mol C.D., Arvai A.S., Sanderson R.J., Slupphaug G., Kavli B., Krokan H.E., Mosbaugh D.W., Tainer J. A. (1995) Crystal structure of human uracil-DNA glycosylase in complex with a protein inhibitor: Protein mimicry of DNA. Cell, 82, p. 701-708.

186. Neddermann P., Jiricny J. (1994) Efficient removal of uracil from G»U mispairs by the mismatch-specific thymine DNA glycosylase from HeLa cells. Proc. Natl Acad. Sci. U.S.A., 91, p. 1642-1646.

187. Neddermann P., Gallinari P., Lettieri T., Schmid D., Truong O., Hsuan J.J., Wiebauer K., Jiricny J. (1996) Cloning and expression of human G/T mismatch-specific thymine-DNA glycosylase. J. Biol. Chem., 271, p. 12767-12774.

188. Schmutte C., Baffa R., Veronese L.M., Murakumo Y., Fishel R. (1997) Human thymine-DNA glycosylase maps at chromosome 12q22-q24.1: A region of high loss of heterozygosity in gastric cancer. Cancer Res., 57, p. 3010-3015.

189. Gallinari P., Jiricny J. (1996) A new class of uracil-DNA glycosylases related to human thymine-DNA glycosylase. Nature, 383, p. 735-738.

190. Sibghat-Ullah, Day R.S., III (1995) Site specificity of incisions at G:T and O6-methylguanine:T base mismatches in DNA by human cell-free extractst Biochemistry, 34, p. 6869-6875.

191. Sung J.-S., Mosbaugh D.W. (2000) Escherichia coli double-strand uracil-DNA glycosylase: Involvement in uracil-mediated DNA base excision repair and stimulation of activity by endonuclease IV. Biochemistry, 39, p. 10224-10235.

192. Hardeland U., Steinacher R., Jiricny J., Schar P. (2002) Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. EMBOJ., 21, p. 1456-1464.

193. Urn S., Harbers M., Benecke A., Pierrat B., Losson R., Chambon P. (1998) Retinoic acid receptors interact physically and functionally with the T:G mismatch-specific thymine-DNA glycosylase. J. Biol. Chem., 273, p. 20728-20736.

194. Tini M., Benecke A., Um S.-J., Torchia J., Evans R.M., Chambon P. (2002) Association of CBP/p300 acetylase and. thymine DNA glycosylase links DNA repair and transcription Mol. Cell, 9, p. 265-277.

195. Shimizu Y., Iwai S., Hanaoka F., Sugasawa K. (2003) Xeroderma pigmentosum group C protein interacts physically and functionally with thymine DNA glycosylase. EMBO J., 22, p. 164-173.

196. Lutsenko E., Bhagwat A.S. (1999) The role of the Escherichia coli Mug protein in the removal of uracil and 3,A^-ethenocytosine from DNA J. Biol. Chem., 274, p. 3103431038.

197. Haushalter K.A., Stukenberg P.T., Kirschner M.W., Verdine G.L. (1999) Identification of a new uracil-DNA glycosylase family by expression cloning using synthetic inhibitors. Curr. Biol., 9, p. 174-185.

198. Wibley J.E.A., Waters T.R., Haushalter K., Verdine G.L., Pearl L.H. (2003) Structure and specificity of the vertebrate anti-mutator uracil-DNA glycosylase SMUG1. Mol. Cell, 11, p. 1647-1659.

199. Elateri I., Muller-Weeks S., Caradonna S. (2003) The transcription factor, NFI/CTF plays a positive regulatory role in expression of the hSMUGl gene. DNA Repair, 2, p. 13711385.

200. Sandigursky M., Franklin W.A. (2000) Uracil-DNA glycosylase in the extreme thermophile Archaeoglobus fulgidus. J. Biol. Chem., 215, p. 19146-19149.

201. Sartori A.A., Schar P., Fitz-Gibbon S., Miller J.H., Jiricny J. (2001) Biochemical characterization of uracil processing activities in the hyperthermophilic archaeon Pyrobaculum aerophilum. J. Biol. Chem., 276, p. 29979-29986.

202. Hinks J.A., Evans M.C.W., de Miguel Y., Sartori A.A., Jiricny J., Pearl L.H. (2002) An iron-sulfur cluster in the family 4 uracil-DNA glycosylases. J. Biol. Chem., 277, p. 16936-16940.

203. Sartori A.A., Fitz-Gibbon S., Yang H., Miller J.H., Jiricny J. (2002) A novel uracil-DNA glycosylase with broad substrate specificity and an unusual active site. EMBO J., 21, p. 3182-3191.

204. Starkuviene V., Fritz H.-J. (2002) A novel type of uracil-DNA glycosylase mediating repair of hydrolytic DNA damage in the extremely thermophilic eubacterium Thermus thermophilus. Nucleic Acids Res., 30, p. 2097-2102.

205. Chetsanga C.J., Lindahl T. (1979) Release of 7-methylguanine residues whose imidazole rings have been opened from damaged DNA by a DNA glycosylase from Escherichia coli. Nucleic Acids Res., 6, p. 3673-3684.

206. Boiteux S., O'Connor T.R., Laval J. (1987) Formamidopyrimidine-DNA glycosylase of Escherichia coli: Cloning and sequencing of the fpg structural gene and overproduction of the protein. EMBO J., 6, p. 3177-3183.

207. Cabrera M., Nghiem Y., Miller J.H. (1988) mutM, a second mutator locus in Escherichia coli that generates GC-»TA transversions. J. Bacteriol., 170, p. 5405-5407.

208. Tchou J., Kasai H., Shibutani S., Chung M.-H., Laval J., Grollman A.P., Nishimura S. (1991) 8-oxoguanine (8-hydroxyguanine) DNA glycosylase and its substrate specificity. Proc. Natl Acad. Sei. U.S.A., 88, p. 4690-4694.

209. Boiteux S., Huisman O. (1989) Isolation of a formamidopyrimidine-DNA glycosylase (fpg) mutant of Escherichia coli K12. Mol. Gen. Genet., 215, p. 300-305.

210. Gifford C.M., Wallace S.S. (1999) The genes encoding formamidopyrimidine and MutY DNA glycosylases in Escherichia coli are transcribed as part of complex Operons. J. Bacteriol., 181, p. 4223-4236.

211. Laity J.H., Lee B.M., Wright P.E. (2001) Zinc finger proteins: New insights into structural and functional diversity. Curr. Opin. Struct. Biol., 11, p. 39-46.

212. Karakaya A., Jaruga P., Bohr V.A., Grollman A.P., Dizdaroglu M. (1997) Kinetics of excision of purine lesions from DNA by Escherichia coli Fpg protein. Nucleic Acids Res., 25, p. 474-479.

213. Tchou J., Bodepudi V., Shibutani S., Antoshechkin I., Miller J., Grollman A.P., Johnson F. (1994) Substrate specificity of Fpg protein: Recognition and cleavage of oxidatively damaged DNA. J. Biol. Chem., 269, p. 15318-15324.

214. Rabow L.E., Kow Y.W. (1997) Mechanism of action of base release by Escherichia coli Fpg protein: Role of lysine 155 in catalysis. Biochemistry, 36, p. 5084-5096.

215. Speina E., Ciesla J.M., Wojcik J., Bajek M., Kusmierek J.T., Tudek B. (2001) The pyrimidine ring-opened derivative of LA'6 -ethenoadenine is excised from DNA by the Escherichia coli Fpg and Nth proteins. J. Biol. Chem., 276, p. 21821-21827.

216. Li Q., Laval J., Ludlum D.B. (1997) Fpg protein releases a ring-opened N-l guanine adduct from DNA that has been modified by sulfur mustard. Carcinogenesis, 18, p. 10351038.

217. Oleykowski C.A., Mayernik J.A., Lim S.E., Groopman J.D., Grossman L., Wogan G.N., Yeung A.T. (1993) Repair of aflatoxin B1 DNA adducts by the UvrABC endonuclease of Escherichia coli. J. Biol. Chem., 268, p. 7990-8002.

218. Purmal A.A., Lampman G.W., Bond J.P., Hatahet Z., Wallace S.S. (1998) Enzymatic processing of uracil glycol, a major oxidative product of DNA cytosine. J. Biol. Chem., 273, p. 10026-10035.

219. Gasparutto D., Ait-Abbas M., Jaquinod M., Boiteux S., Cadet J. (2000) Repair and coding properties of 5-hydroxy-5-methylhydantoin nucleosides inserted into DNA oligomers. Chem. Res. Toxicol., 13, p. 575-584.

220. Zhang Q.-M., Miyabe I., Matsumoto Y., Kino K., Sugiyama H., Yonei S. (2000) Identification of repair enzymes for 5-formyluracil in DNA: Nth, Nei, and MutM proteins of Escherichia coli. J. Biol. Chem., 275, p. 35471-35477.

221. Jurado J., Saparbaev M., Matray T.J., Greenberg M.M., Laval J. (1998) The ring fragmentation product of thymidine C5-hydrate when present in DNA is repaired by the Escherichia coli Fpg and Nth proteins. Biochemistry, 37, p. 7757-7763.

222. Purmal A.A., Rabow L.E., Lampman G.W., Cunningham R.P., Kow Y.W. (1996) A common mechanism of action for the iV-glycosylase activity of DNA iV-glycosylase/AP lyases from E. coli and T4. Mutat. Res., 364, p. 193-207.

223. Bessho T., Tano K., Kasai H., Nishimura S. (1992) Deficiency of 8-hydroxyguanine DNA endonuclease activity and accumulation of the 8-hydroxyguanine in mutator mutant imutM) of Escherichia coli. Biochem. Biophys. Res. Commun., 188, p. 372-378.

224. O'Connor T.R., Laval J. (1989) Physical association of the 2,6-diamino-4-hydroxy-5N-formamidopyrimidine-DNA glycosylase of Escherichia coli and an activity nicking DNA at apurinic/apyrimidinic sites. Proc. Natl Acad. Sei. U.S.A., 86, p. 5222-5226.

225. Graves R.J., Felzenszwalb I., Laval J., O'Connor T.R. (1992) Excision of 5'-terminal deoxyribose phosphate from damaged DNA is catalyzed by the Fpg protein of Escherichia coli. J. Biol. Chem., 267, p. 14429-14435.

226. Bailly V., Verly W.G., O'Connor T., Laval J. (1989) Mechanism of DNA strand nicking at apurinic/apyrimidinic sites by Escherichia coli formamidopyrimidineJDNA glycosylase. Biochem. J., 262, p. 581-589.

227. Bhagwat M., Gerlt J.A. (1996) 3'- and 5'-strand cleavage reactions catalyzed by the Fpg protein from Escherichia coli occur via successive ß- and 8-elimination mechanisms, respectively. Biochemistry, 35, p. 659-665.

228. Sun B., Latham K.A., Dodson M.L., Lloyd R.S. (1995) Studies of the catalytic mechanism of five DNA glycosylases: Probing for enzyme-DNA imino intermediates. J. Biol. Chem., 270, p. 19501-19508.

229. Tchou J., Grollman A.P. (1995) The catalytic mechanism of Fpg protein: Evidence for a Schiff base intermediate and amino terminus localization of the catalytic site. J. Biol. Chem., 270, p. 11671-11677.

230. Sidorkina O., Dizdaroglu M., Laval J. (2001) Effect of single mutations on the specificity of Escherichia coli FPG protein for excision of purine lesions from DNA damaged by free radicals. Free Radic. Biol. Med., 31, p. 816-823.

231. O'Connor T.R., Graves R.J., de Murcia G., Castaing B., Laval J. (1993) Fpg protein of Escherichia coli is a zinc finger protein whose cysteine residues have a structural and/or functional role. J. Biol. Chem., 268, p. 9063-9070.

232. Tchou J., Michaels M.L., Miller J.H., Grollman A.P. (1993) Function of the zinc finger in Escherichia coli Fpg proteia J. Biol. Chem., 268, p. 26738-26744.