Курить вредно, дышать вредно, жить вредно 3 страница. 233. Lavrukhin O.V., Lloyd R.S

233. Lavrukhin O.V., Lloyd R.S. (2000) Involvement of phylogenetically conserved acidic amino acid residues in catalysis by an oxidative DNA damage enzyme formamidopyrimidine glycosylase. Biochemistry, 39, p. 15266-15271.

234. Melamede R.J., Hatahet Z., Kow Y.W., Ide H., Wallace S.S. (1994) Isolation and characterization of endonuclease VIII from Escherichia coli. Biochemistry, 33, p. 12551264.

235. Jiang D., Hatahet Z., Melamede R.J., Kow Y.W., Wallace S.S. (1997) Characterization of Escherichia coli endonuclease VIII. J. Biol. Chem., 272, p. 32230-32239.

236. Rieger R.A., McTigue M.M., Kycia J.H., Gerchman S.E., Grollman A.P., Iden C.R. (2000) Characterization of a cross-linked DNA-endonuclease VIII repair complex by electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom., 11, p. 505-515.

237. Blaisdell J.O., Hatahet Z., Wallace S.S. (1999) A novel role for Escherichia coli endonuclease VIII in prevention of spontaneous G—»T transversions. J. Bacteriol, 181, p. 6396-6402.

238. Miller H., Fernandes A.S., Zaika E., McTigue M.M., Torres M.C., Wente M., Iden C.R., Grollman A.P. (2004) Stereoselective excision of thymine glycol from oxidatively damaged DNA. Nucleic Acids Res., 32, p. 338-345.

239. Burgess S., Jaruga P., Dodson M.L., Dizdaroglu M., Lloyd R.S. (2002) Determination of active site residues in Escherichia coli endonuclease VIII. J. Biol Chem., 277, p. 29382944.

240. Lu A.-L., Lee C.-Y., Li L., Li X. (2006) Physical and functional interactions between Escherichia coli MutY and endonuclease VIII. Biochem. J., 393, p. 381-387.

241. Najrana T., Saito Y., Uraki F., Kubo K., Yamamoto K. (2000) Spontaneous and osmium tetroxide-induced mutagenesis in an Escherichia coli strain deficient in both endonuclease III and endonuclease VIII. Mutagenesis, 15, p. 121-125.

242. Wallace S.S., Bandaru V., Kathe S.D., Bond J.P. (2003) The enigma of endonuclease VIII. DNA Repair, 2, p. 441-453.

243. Hazra T.K., Kow Y.W., Hatahet Z., Imhoff B., Boldogh I., Mokkapati S.K., Mitra S., Izumi T. (2002) Identification and characterization of a novel human DNA glycosylase for repair of cytosine-derived lesions. J. Biol Chem., 277, p. 30417-30420.

244. Gates F.T., III, Linn S. (1977) Endonuclease from Escherichia coli that acts specifically upon duplex DNA damaged by ultraviolet light, osmium tetroxide, acid, or X-rays. J. Biol Chem., 252, p. 2802-2807.

245. Demple B., Linn S. (1980) DNA jV-glycosylases and UV repair. Nature, 287, p. 203-208.

246. Breimer L., Lindahl T. (1980) A DNA glycosylase from Escherichia coli that releases free urea from a polydeoxyribonucleotide containing fragments of base residues. Nucleic Acids Res., 8, p. 6199-6211.

247. Katcher H.L., Wallace S.S. (1983) Characterization of the Escherichia coli X-ray endonuclease, endonuclease III. Biochemistry, 22, p. 4071-4081.

248. Cunningham R.P., Weiss B. (1985) Endonuclease III (nth) mutants of Escherichia coli. Proc. Natl Acad. Sei. U.S.A., 82, p. 474-478.

249. Gossett J., Lee K., Cunningham R.P., Doetsch P.W. (1988) Yeast redoxyendonuclease, a DNA repair enzyme similar to Escherichia coli endonuclease III. Biochemistry, 27, p. 2629-2634.

250. Breimer L.H. (1983) Urea-DNA glycosylase in mammalian cells. Biochemistry, 22, p. 4192-4197.

251. Hilbert T.P., Chaung W., Boorstein R.J., Cunningham R.P., Teebor G.W. (1997) Cloning and expression of the cDNA encoding the human homologue of the DNA repair enzyme, Escherichia coli endonuclease III. J. Biol. Chem., 272, p. 6733-3740.

252. Gifford C.M., Wallace S.S. (2000) The genes encoding endonuclease VIII and endonuclease III in Escherichia coli are transcribed as the terminal genes in operons. Nucleic Acids Res., 28, p. 762-769.

253. Koo M.-S., Lee J.-H., Rah S.-Y., Yeo W.-S., Lee J.-W., Lee K.-L., Koh Y.-S., Kang S.O., Roe J.-H. (2003) A reducing system of the superoxide sensor SoxR in Escherichia coli. EMBO J., 22, p. 2614-2622.

254. Cunningham R.P., Asahara H., Bank J.F., Scholes C.P., Salerno J.C., Surerus K., Münck E., McCracken J., Peisach J., Emptage M.H. (1989) Endonuclease III is an iron-sulfur protein. Biochemistry, 28, p. 4450-4455.

255. Fu W., O'Handley S., Cunningham R.P., Johnson M.K. (1992) The role of the iron-sulfur cluster in Escherichia coli endonuclease III: A resonance Raman study. J. Biol. Chem., 267, p. 16135-16137.

256. Augeri L., Lee Y.-M., Barton A.B., Doetsch P.W. (1997) Purification, characterization, gene cloning, and expression of Saccharomyces cerevisiae redoxyendonuclease, a homolog of Escherichia coli endonuclease III. Biochemistry, 36, p. 721-729.

257. Dizdaroglu M., Laval J., Boiteux S. (1993) Substrate specificity of the Escherichia coli endonuclease III: Excision of thymine- and cytosine-derived lesions in DNA produced by radiation-generated free radicals. Biochemistry, 32, p. 12105-12111.

258. Matsumoto Y., Zhang Q.-M., Takao M., Yasui A., Yonei S. (2001) Escherichia coli Nth and human hNTHl DNA glycosylases are involved in removal of 8-oxoguanine from 8-oxoguanine/guanine mispairs in DNA. Nucleic Acids Res., 29, p. 1975-1981.

259. Kim J., Linn S. (1988) The mechanisms of action of E. coli endonuclease III and T4 UV endonuclease (endonuclease V) at AP sites. Nucleic Acids Res., 16, p. 1135-1141.

260. Thayer M.M., Ahern H., Xing D., Cunningham R.P., Tainer J.A. (1995) Novel DNA binding motifs in the DNA repair enzyme endonuclease III crystal structure. EMBO J., 14, p. 4108-4120.

261. Fromme J.C., Verdine G.L. (2003) Structure of a trapped endonuclease III-DNA covalent intermediate. EMBO J., 22, p. 3461-3471.

262. Kow Y.W., Wallace S.S. (1987) Mechanism of action of Escherichia coli endonuclease III. Biochemistry, 26, p. 8200-8206.

263. Marenstein D.R., Chan M.K., Altamirano A., Basu A.K., Boorstein R.J., Cunningham R.P., Teebor G.W. (2003) Substrate specificity of human endonuclease III (hNTHl): Effect of human APE1 on hNTHl activity. J. Biol. Chem., 278, p. 9005-9012.

264. Campalans A., Marsin S., Nakabeppu Y., O'Connor T.R., Boiteux S., Radicella J.P. (2005) XRCC1 interactions with multiple DNA glycosylases: A model for its recruitment to base excision repair. DNA Repair, 4, p. 826-835.

265. Liu X., Roy R. (2002) Truncation of amino-terminal tail stimulates activity of human endonuclease III (hNTHl). J. Mol. Biol., 321, p. 265-276.

266. Bessho T. (1999) Nucleotide excision repair 3' endonuclease XPG stimulates the activity of base excision repair enzyme thymine glycol DNA glycosylase. Nucleic Acids Res., 27, p. 979-983.

267. Ocampo M.T.A., Chaung W., Marenstein D.R., Chan M.K., Altamirano A., Basu A.K., Boorstein R.J., Cunningham R.P., Teebor G.W. (2002) Targeted deletion of mNthl reveals a novel DNA repair enzyme activity. Mol. Cell. Biol., 22, p. 6111-6121.

268. Lu A.-L., Chang D.-Y. (1988) Repair of single base-pair transversion mismatches of Escherichia coli in vitro: Correction of certain A/G mismatches is independent of dam methylation and host mutHLS gene functions. Genetics, 118, p. 593-600.

269. Nghiem Y., Cabrera M., Cupples C.G., Miller J.H. (1988) The mutY gene: A mutator locus in Escherichia coli that generates G-C—>T-A transversions. Proc. Natl Acad. Sci. U.S.A., 85, p. 2709-2713.

270. Lu A.-L., Chang D.-Y. (1988) A novel nucleotide excision repair for the conversion of an A/G mismatch to C/G base pair in E. coli. Cell, 54, p. 805-812.

271. Au K.G., Clark S., Miller J.H., Modrich P. (1989) Escherichia coli mutY gene encodes an adenine glycosylase active on G-A mispairs. Proc. Natl Acad. Sci. U.S.A., 86, p. 88778881.

272. Michaels M.L., Pham L., Nghiem Y., Cruz C., Miller J.H. (1990) MutY, an adenine glycosylase active on G-A mispairs, has homology to endonuclease III. Nucleic Acids Res., 18, p. 3841-3845.

273. Noll D.M., Gogos A., Granek J.A., Clarke N.D. (1999) The C-terminal domain of the adenine-DNA glycosylase MutY confers specificity for 8-oxoguanine-adenine mispairs and may have evolved from MutT, an 8-oxo-dGTPase. Biochemistry, 38, p. 6374-6379.

274. McGoldrick J.P., Yeh Y.-C., Solomon M., Essigmann J.M., Lu A.-L. (1995) Characterization of a mammalian homolog of .the Escherichia coli MutY mismatch repair protein Mol. Cell. Biol., 15, p. 989-996.

275. Ma H., Lee H.M., Englander E.W. (2004) N-terminus of the rat adenine glycosylase MYH affects excision rates and processing of MYH-generated abasic sites. Nucleic Acids Res., 32, p. 4332-4339.

276. Takao M., Zhang Q.-M., Yonei S., Yasui A. (1999) Differential subcellular localization of human MutY homolog (hMYH) and the functional activity of adenine:8-oxoguanine DNA glycosylase. Nucleic Acids Res., 27, p. 3638-3644.

277. Michaels M.L., Tchou J., Grollman A.P., Miller J.H. (1992) A repair system for 8-oxo-7,8-dihydrodeoxyguanine. Biochemistry, 31, p. 10964-10968.

278. Bulychev N.V., Varaprasad C.V., Dormán G., Miller J.H., Eisenberg M., Grollman A.P., Johnson F. (1996) Substrate specificity of Escherichia coli MutY protein. Biochemistry, 35, p. 13147-13156.

279. McCann J.A.B., Berti P.J. (2003) Adenine release is fast in MutY-catalyzed hydrolysis of G:A and 8-oxo-G:A DNA mismatches. J. Biol. Chem., 278, p. 29587-29592.

280. Pope M.A., Porello S.L., David S.S. (2002) Escherichia coli apurinic-apyrimidinic endonucleases enhance the turnover of the adenine glycosylase MutY with G:A substrates. J. Biol. Chem., 277, p. 22605-22615.

281. Parker A., Gu Y., Mahoney W., Lee S.-H., Singh K.K., Lu A.-L. (2001) Human homolog of the MutY repair protein (hMYH) physically interacts with proteins involved in long patch DNA base excision repair. J. Biol. Chem., 276, p. 5547-5555.

282. Parker A.R., O'Meally R.N., Sahin F., Su G.H., Racke F.K., Nelson W.G., DeWeese T.L., Eshleman J.R. (2003) Defective human MutY phosphorylation exists in colorectal cancer cell lines with wild-type MutY alleles. J. Biol. Chem., 278, p. 47937-47945.

283. Manuel R.C., Czerwinski E.W., Lloyd R.S. (1996) Identification of the structural and functional domains of MutY, an Escherichia coli DNA mismatch repair enzyme. J. Biol. Chem., 271, p. 16218-16226.

284. Chmiel N.H., Golinelli M.-P., Francis A.W., David S.S. (2001) Efficient recognition of substrates and substrate analogs by the adenine glycosylase MutY requires the C-terminal domain. Nucleic Acids Res., 29, p. 553-564.

285. Strauss B., Searashi T., Robbins M. (1966) Repair of DNA studied with a nuclease specific for UV-induced lesions. Proc. Natl Acad. Sei. U.S.A., 56, p. 932-939.

286. Haseltine W.A., Gordon L.K., Lindan C.P., Grafstrom R.H., Shaper N.L., Grossman L. (1980) Cleavage of pyrimidine dimers in specific DNA sequences by a pyrimidine dimer DNA-glycosylase of M. luteus. Nature, 285, p. 634-641.

287. Shiota S., Nakayama H. (1997) UV endonuclease of Micrococcus luteus, a cyclobutane pyrimidine dimer-DNA glycosylase/abasic lyase: Cloning and characterization of the gene. Proc. Natl Acad. Sei. U.S.A., 94, p. 593-598.

288. Nyaga S.G., Lloyd R.S. (2000) Two glycosylase/abasic lyases from Neisseria mucosa that initiate DNA repair at sites of UV-induced photoproducts. J. Biol. Chem., 275, p. 23569-23576.

289. Gordon L.K., Haseltine W.A. (1980) Comparison of the cleavage of pyrimidine dimers by the bacteriophage T4 and Micrococcus luteus UV-specific endonucleases. J. Biol. Chem., 255, p. 12047-12050.

290. Nakayama H., Shiota S., Umezu K. (1992) UV endonuclease-mediated enhancement of UV survival in Micrococcus luteus: Evidence revealed by deficiency in the Uvr homolog. Mutat. Res., 273, p. 43-48.

291. Begley T.J., Cunningham R.P. (1999) Methanobacterium thermoformicicum thymine DNA mismatch glycosylase: Conversion of an N-glycosylase to an AP lyase. Protein Eng., 12, p. 333-340.

292. Chung M.-H., Kim H.-S., Ohtsuka E., Kasai H., Yamamoto F., Nishimura S. (1991) An endonuclease activity in human polymorphonuclear neutrophils that removes 8-hydroxyguanine residues from DNA. Biochem. Biophys. Res. Commun., 178, p. 14721478.

293. Rosenquist T.A., Zharkov D.O., Grollman A.P. (1997) Cloning and characterization of a mammalian 8-oxoguanine DNA glycosylase. Proc. Natl Acad. Sei. U.S.A., 94, p. 74297434.

294. Radicella J.P., Dherin C., Desmaze C., Fox M.S., Boiteux S. (1997) Cloning and characterization of hOGGl, a human homolog of the OGG1 gene of Saccharomyces cerevisiae. Proc. Natl Acad. Sei. U.S.A., 94, p. 8010-8015.

295. Bj0räs M., Luna L., Johnsen B., Hoff E„ Haug T„ Rognes T., Seeberg E. (1997) Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites. EMBO J., 16, p. 6314-6322.

296. Ishida T., Hippo Y., Nakahori Y., Matsushita I., Kodama T., Nishimura S., Aburatani H. (1999) Structure and chromosome location of human OGG1. Cytogenet. Cell Genet., 85, p. 232-236.

297. Chatterjee A., Mambo E., Osada M., Upadhyay S., Sidransky D. (2006) The effect of p53-RNAi and p53 knockout on human 8-oxoguanine DNA glycosylase (hOggl) activity. FASEB J., 20, p. 112-114.

298. Upadhyay S., Chatterjee A., Trink B., Sommer M., Ratovitski E., Sidransky D. (2007) TAp63y regulates hOGGl and repair of oxidative damage in cancer cell lines. Biochem. Biophys. Res. Commun., 356, p. 823-828.

299. Hirano T., Kudo H., Doi Y., Nishino T., Fujimoto S., Tsurudome Y., Ootsuyama Y., Kasai H. (2004) Detection of a smaller, 32-kDa 8-oxoguanine DNA glycosylase 1 in 3'-methyl-4-dimethylamino-azobenzene-treated mouse liver. Cancer Sci., 95, p. 118-122.

300. Leipold M.D., Workman H., Muller J.G., Burrows C.J., David S.S. (2003) Recognition and removal of oxidized guanines in duplex DNA by the base excision repair enzymes hOGGl, yOGGl, and yOGG2. Biochemistry, 42, p. 11373-11381.

301. Bruner S.D., Nash H.M., Lane W.S., Verdine G.L. (1998) Repair of oxidatively damaged guanine in Saccharomyces cerevisiae by an alternative pathway. Curr. Biol., 8, p. 393403.

302. Girard P.-M., Guibourt N., Boiteux S. (1997) The Oggl protein of Saccharomyces . cerevisiae: A 7,8-dihydro-8-oxoguanine DNA glycosylase/AP lyase whose lysine 241 isa critical residue for catalytic activity. Nucleic Acids Res., 25, p. 3204-3211.

303. Nash H.M., Lu R., Lane W.S., Verdine G.L. (1997) The critical active-site amine of the human 8-oxoguanine DNA glycosylase, hOggl: Direct identification, ablation and chemical reconstitution. Chem. Biol., 4, p. 693-702.

304. Hill J.W., Hazra T.K., Izumi T., Mitra S. (2001) Stimulation of human 8-oxoguanine-DNA glycosylase by AP-endonuclease: Potential coordination of the initial steps in base excision repair. Nucleic Acids Res., 29, p. 430-438.

305. Tuo J., Chen C., Zeng X., Christiansen M., Bohr V.A. (2002) Functional crosstalk between hOggl and the helicase domain of Cockayne syndrome group B protein DNA Repair, l,p. 913-927.

306. Dantzer F., Luna L., Bjoras M., Seeberg E. (2002) Human OGG1 undergoes serine phosphorylation and associates with the nuclear matrix and mitotic chromatin in vivo. Nucleic Acids Res., 30, p. 2349-2357.

307. Bhakat K.K., Mokkapati S.K., Boldogh I., Hazra T.K., Mitra S. (2006) Acetylation of human 8-oxoguanine-DNA glycosylase by p300 and its role in 8-oxoguanine repair in vivo. Mol. Cell Biol, 26, p. 1654-1665.

308. Sakumi K., Tominaga Y., Furuichi M., Xu P., Tsuzuki T., Sekiguchi M., Nakabeppu Y. (2003) Oggl knockout-associated lung tumorigenesis and its suppression by Mthl gene disruption Cancer Res., 63, p. 902-905.

309. Begley T.J., Haas B.J., Noel J., Shekhtman A., Williams W.A., Cunningham R.P. (1999) A new member of the endonuclease III family of DNA repair enzymes that removes methylated purines from DNA. Curr. Biol, 9, p. 653-656.

310. Eichman B.F., O'Rourke E.J., Radicella J.P., Ellenberger T. (2003) Crystal structures of 3-methyladenine DNA glycosylase MagUI and the recognition of alkylated bases. EMBO J., 22, p. 4898-4909.

311. Sartori A.A., Lingaraju G.M., Hunziker P., Winkler F.K., Jiricny J. (2004) Pa-AGOG, the founding member of a new family of archaeal 8-oxoguanine DNA-glycosylases. Nucleic Acids Res., 32, p. 6531 -6539.

312. Lingaraju G.M., Sartori A.A., Kostrewa D., Prota A.E., Jiricny J., Winkler F.K. (2005) A DNA glycosylase from Pyrobaculum aerophilum with an 8-oxoguanine binding mode and a noncanonical helix-hairpin-helix structure. Structure, 13, p. 87-98.

313. Osborne M.R., Phillips D.H. (2000) Preparation of a methylated DNA standard, and its stability on storage. Chem. Res. Toxicol., 13, p. 257-261.

314. Thomas L., Yang C.H., Goldthwait D.A. (1982) Two DNA glycosyiases in Escherichia coli which release primarily 3-methyladenine. Biochemistry, 21, p. 1162-1169.

315. Yamamoto Y., Katsuki M., Sekiguchi M., Otsuji N. (1978) Escherichia coli gene that controls sensitivity to alkylating agents. J. Bacteriol., 135, p. 144-152.

316. Karran P., Hjelmgren T., Lindahl T. (1982) Induction of a DNA glycosylase for N-methylated purines is part of the adaptive response to alkylating agents. Nature, 296, p. 770-773.

317. Nakabeppu Y., Miyata T., Kondo H., Iwanaga S., Sekiguchi M. (1984) Structure and expression of the alkA gene of Escherichia coli involved in adaptive response to alkylating agents. J. Biol. Chem., 259, p. 13730-13736.

318. Teo I., Sedgwick B., Kilpatrick M.W., McCarthy T.V., Lindahl T. (1986) The intracellular signal for induction of resistance to alkylating agents in E. coli. Cell, 45, p. 315-324.

319. Landini P., Busby S.J.W. (1999) Expression of the Escherichia coli Ada regulon in stationary phase: Evidence for rpo5-dependent negative regulation of alkA transcriptioa J. Bacteriol, 181, p. 6836-6839.

320. Saparbaev M., Laval J. (1994) Excision of hypoxanthine from DNA containing dIMP residues by the Escherichia coli, yeast, rat, and human alkylpurine DNA glycosyiases. Proc. Natl Acad. Sei. U.S.A., 91, p. 5873-5877.

321. Saparbaev M., Kleibl K., Laval J. (1995) Escherichia coli, Saccharomyces cerevisiae, rat and human 3-methyladenine DNA glycosyiases repair 1 ,A^-ethenoadenine when present in DNA. Nucleic Acids Res., 23, p. 3750-3755.

322. O'Brien P.J., Ellenberger T. (2004) The Escherichia coli 3-methyladenine DNA glycosylase AlkA has a remarkably versatile active site. J. Biol. Chem., 279, p. 2687626884.

323. McCarthy T.V., Karran P., Lindahl T. (1984) Inducible repair of O-alkylated DNA pyrimidines in Escherichia coli. EMBOJ., 3, p. 545-550.

324. Berdal K.G., Johansen R.F., Seeberg E. (1998) Release of normal bases from intact DNA by a native DNA repair enzyme. EMBO J., 17, p. 363-367.

325. Bjelland S., Seeberg E. (1996) Different efficiencies of the Tag and AlkA DNA glycosyiases from Escherichia coli in the removal of 3-methyladenine from single-stranded DNA. FEBS Lett., 397, p. 127-129.

326. Kaasen I., Evensen G., Seeberg E. (1986) Amplified expression of the tag and alkA+ genes in Escherichia coli: Identification of gene products and effects on alkylation resistance. J. Bacteriol, 168, p. 642-647.

327. Bjoräs M., Klungland A., Johansen R.F., Seeberg E. (1995) Purification and properties of the alkylation repair DNA glycosylase encoded by the MAG gene from Saccharomyces cerevisiae. Biochemistry, 34, p. 4577-4582.

328. Hendrich B., Bird A. (1998) Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol. Cell Biol, 18, p. 6538-6547.

329. Hendrich B., Abbott C., McQueen H., Chambers D., Cross S., Bird A. (1999) Genomic structure and chromosomal mapping of the murine and human Mbdl, Mbd2, Mbd3, and Mbd4 genes. Mamm. Genome, 10, p. 906-912.

330. Yoon J.-H., Iwai S., O'Connor T.R., Pfeifer G.P. (2003) Human thymine DNA glycosylase (TDG) and methyl-CpG-binding protein 4 (MBD4) excise thymine glycol (Tg) from a Tg:G mispair. Nucleic Acids Res., 31, p. 5399-5404.

331. Kondo E., Gu Z., Horii A., Fukushige S. (2005) The thymine DNA glycosylase MBD4 represses transcription and is associated with methylated pl6INK4a and hMLHl genes. Mol. Cell. Biol., 25, p. 4388-4396.

332. Millar C.B., Guy J„ Sansom O.J., Selfridge J., MacDougall E., Hendrich B., Keightley P.D., Bishop S.M., Clarke A.R., Bird A. (2002) Enhanced CpG mutability and tumorigenesis in MBD4-deficient mice. Science, 297, p. 403-405.

333. Chan S.W.-L., R.Henderson I., Jacobsen S.E. (2005) Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat. Rev. Genet., 6, p. 351-360.

334. Choi Y., Gehring M., Johnson L., Hannon M., Harada J.J., Goldberg R.B., Jacobsen S.E., Fischer R.L. (2002) DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell, 110, p. 33-42.

335. Choi Y., Harada J.J., Goldberg R.B., Fischer R.L. (2004) An invariant aspartic acid in the DNA glycosylase domain of DEMETER is necessary for transcriptional activation of the imprinted MEDEA gene. Proc. Natl Acad. Sei. U.S.A., 101, p. 7481-7486.

336. Gehring M., Huh J.H., Hsieh T.-F., Penterman J., Choi Y., Harada J.J., Goldberg R.B., Fischer R.L. (2006) DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylatioa Cell, 124, p. 495-506.

337. Gong Z., Morales-Ruiz T., Ariza R.R., Roldän-Arjona T., David L., Zhu J.-K. (2002) ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase. Cell, 111, p. 803-814.

338. Agius F., Kapoor A., Zhu J.-K. (2006) Role of the Arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylatioa Proc. Natl Acad. Sei. U.S.A., .103, p. 11796-11801.

339. Riazuddin S., Lindahl T. (1978) Properties of 3-methyladenine-DNA glycosylase from Escherichia coli. Biochemistry, 17, p. 2110-2118.

340. Clarke N.D., Kvaal M., Seeberg E. (1984) Cloning of Escherichia coli genes encoding 3-methyladenine DNA glycosylases I and II. Mol. Gen. Genet., 197, p. 368-372.

341. Bjelland S., Seeberg E. (1987) Purification and characterization of 3-methyladenine DNA glycosylase I from Escherichia coli. Nucleic Acids Res., 15, p. 2787-2801.

342. Bjelland S., Bj0räs M., Seeberg E. (1993) Excision of 3-methylguanine from alkylated DNA by 3-methyladenine DNA glycosylase I of Escherichia coli. Nucleic Acids Res., 21, p. 2045-2049.

343. Kwon K., Cao C., Stivers J.T. (2003) A novel zinc snap motif conveys structural stability to 3-methyladenine DNA glycosylase I. J. Biol. Chem., 278, p. 19442-19446.

344. Luria S.E. (1947) Reactivation of irradiated bacteriophage by transfer of self-reproducing units. Proc. Natl Acad. Sei. U.S.A., 33, p. 253-264.

345. Friedberg E.C., King J.J. (1969) Endonucleolytic cleavage of UV-irradiated DNA controlled by the V* gene in phage T4. Biochem. Biophys. Res. Commun., 37, p. 646-651.

346. Minton K., Durphy M., Taylor R., Friedberg E.C. (1975) The ultraviolet endonuclease of bacteriophage T4: Further characterization. J. Biol. Chem., 250, p. 2823-2829.

347. Yasuda S., Sekiguchi M. (1976) Further purification and characterization of T4 endonuclease V. Biochim. Biophys. Acta, 442, p. 197-207.

348. Friedberg E.C., Lehman I.R. (1974) Excision of thymine dimers by proteolytic and amber fragments of E. coli DNA polymerase I. Biochem. Biophys. Res. Commun., 58, p. 132139.

349. Latham K.A., Lloyd R.S. (1995) 8-Elimination by T4 endonuclease V at a thymine dimer site requires a secondary binding event and amino acid Glu-23. Biochemistry, 34, p. 8796-8803.

350. Mazumder A., Gerlt J.A., Rabow L., Absalon M.J., Stubbe J., Bolton P.H. (1989) UV endonuclease V from bacteriophage T4 catalyzes DNA strand cleavage at aldehydic abasic sites by a syn ß-elimination reaction J. Am. Chem. Soc., Ill, p. 8029-8030.

351. Dodson M.L., Schröck R.D., III, Lloyd R.S. (1993) Evidence for an imino intermediate in the T4 endonuclease V reaction. Biochemistry, 32, p. 8284-8290.

352. Schröck R.D., III, Lloyd R.S. (1993) Site-directed mutagenesis of the NH2 terminus of T4 endonuclease V: The position of the aNH2 moiety affects catalytic activity. J. Biol. Chem., 268, p. 880-886.

353. Lloyd R.S., Hanawalt P.C., Dodson M.L. (1980) Processive action of T4 endonuclease V on ultraviolet-irradiated DNA. Nucleic Acids Res., 8, p. 5113-5127.

354. Gruskin E.A., Lloyd R.S. (1986) The DNA scanning mechanism of T4 endonuclease V: Effect of NaCl concentration on processive nicking activity. J. Biol. Chem., 261, p. 96079613.

355. Higley M., Lloyd R.S. (1993) Processivity of uracil DNA glycosylase. Mutat. Res., 294, p. 109-116.

356. Francis A.W., David S.S. (2003) Escherichia coli MutY and Fpg utilize a processive mechanism for target location. Biochemistry, 42, p. 801-810.

357. Dalhus В., Helle I.H., Васке P.H., Alseth I., Rognes Т., Bjoras M., Laerdahl J.K. (2007) Structural insight into repair of alkylated DNA by a new superfamily of DNA glycosylases comprising HEAT-like repeats. Nucleic Acids Res., 35, p. 2451-2459.

358. Козлов Ю.В., Сударкина О.Ю., Курманова А.Г. (2006) Рибосом-инактивирующие лектины растений. Молекуляр. биология, 40, с. 711-723.

359. O'Connor T.R., Laval F. (1990) Isolation and structure of a cDNA expressing a mammalian 3-methyladenine-DNA glycosylase. EMBOJ., 9, p. 3337-3342.

360. O'Connor T.R., Laval J. (1991) Human cDNA expressing a functional DNA glycosylase excising 3-methyladenine and 7-methylguanine. Biochem. Biophys. Res. Commun., 176, p. 1170-1177.

361. Vickers M.A., Vyas P., Harris P.C., Simmons D.L., Higgs D.R. (1993) Structure of the human 3-methyladenine DNA glycosylase gene and localization close to the 16p telomere. Proc. Natl Acad. Sci. U.S.A., 90, p. 3437-3441.

362. Bouziane M., Miao F., Bates S.E., Somsouk L., Sang B.-C., Denissenko M., O'Connor T.R. (2000) Promoter structure and cell cycle dependent expression of the human methylpurine-DNA glycosylase gene. Mutat. Res., 461, p. 15-29.

363. O'Connor T.R. (1993) Purification and characterization of human 3-methyladenine-DNA glycosylase. Nucleic Acids Res., 21, p. 5561-5569.

364. Bessho Т., Roy R., Yamamoto K., Kasai H., Nishimura S„ Tano K., Mitra S. (1993) Repair of 8-hydroxyguanine in DNA by mammalian JV-methylpurine-DNA glycosylase. Proc. Natl Acad. Sci. U.S.A., 90, p. 8901-8904.

365. Mattes W.B., Lee C.-S., Laval J., O'Connor T.R. (1996) Excision of DNA adducts of nitrogen mustards by bacterial and mammalian 3-methyladenine-DNA glycosylases. Carcinogenesis, 17, p. 643-648.

366. Hitchcock T.M., Dong L., Connor E.E., Meira L.B., Samson L.D., Wyatt M.D., Cao W. (2004) Oxanine DNA glycosylase activity from mammalian alkyladenine glycosylase. J. Biol. Chem., 279, p. 38177-38183.

367. O'Brien P.J., Ellenberger T. (2003) Human alkyladenine DNA glycosylase uses acid-base catalysis for selective excision of damaged purines. Biochemistry, 42, p. 1241812429.

368. Hang В., Sagi J., Singer B. (1998) Correlation between sequence-dependent glycosylase repair and the thermal stability of oligonucleotide duplexes containing 1JV6-ethenoadenine. J. Biol. Chem., 273, p. 33406-33413.

369. Likhite V.S., Cass E.I., Anderson S.D., Yates J.R., Nardulli A.M. (2004) Interaction of estrogen receptor with 3-methyladenine DNA glycosylase modulates transcription and DNA repair. J. Biol. Chem., 279, p. 16875-16882.

370. Miao F., Bouziane M., Dammann R., Masutani C., Hanaoka F., Pfeifer G., O'Connor T.R. (2000) 3-Methyladenine-DNA glycosylase (MPG protein) interacts with human RAD23 proteins. J. Biol Chem., 275, p. 28433-28438.

371. Dodson M.L., Michaels M.L., Lloyd R.S. (1994) Unified catalytic mechanism for DNA glycosylases. J. Biol Chem., 269, p. 32709-32712.

372. Fuxreiter M., Warshel A., Osman R. (1999) Role of active site residues in the glycosylase step of T4 endonuclease V. Computer simulation studies on ionization states. Biochemistry, 38, p. 9577-9589.

373. Osman R., Fuxreiter M., Luo N. (2000) Specificity of damage recognition and catalysis of DNA repair. Comput. Chem., 24, p. 331-339.

374. Bianchet M.A., Seiple L.A., Jiang Y.L., Ichikawa Y„ Amzel L.M., Stivers J.T. (2003) Electrostatic guidance of glycosyl cation migration along the reaction coordinate of uracil DNA glycosylase. Biochemistry, 42, p. 12455-12460.

375. Berti P.J., McCann J.A.B. (2006) Toward a detailed understanding of base excision repair enzymes: Transition state and mechanistic analyses of AA-glycoside hydrolysis and /»/-glycoside transfer. Chem. Rev., 106, p. 506-555.

376. Dinner A.R., Blackburn G.M., Karplus M. (2001) Uracil-DNA glycosylase acts by substrate autocatalysis. Nature, 413, p. 752-755.

377. Deng L., Scharer O.D., Verdine G.L. (1997) Unusually strong binding of a designed transition-state analog to a base-excision DNA repair protein J. Am. Chem. Soc., 119, p. 7865-7866.

378. Scharer O.D., Nash H.M., Jiricny J.,. Laval J., Verdine G.L. (1998) Specific binding of a designed pyrrolidine abasic site analog to multiple DNA glycosylases. J. Biol Chem., 273, p. 8592-8597.

379. McCullough A.K., Sanchez A., Dodson M.L., Marapaka P., Taylor J.-S., Lloyd R.S. (2001) The reaction mechanism of DNA glycosylase/AP lyases at abasic sites. Biochemistry, 40, p. 561-568.

380. Mol C.D., Arvai A.S., Slupphaug G., Kavli B., Alseth I., Krokan H.E., Tainer J.A. (1995) Crystal structure and mutational analysis of human uracil-DNA glycosylase: Structural basis for specificity and catalysis. Cell, 80, p. 869-878.