Чувствительность капиллярной метода дефектоскопии

Чувствительность капиллярного контроля – способность выявления несплошностей данного размера с заданной вероятностью при использовании конкретного способа, технологии контроля и пенетрантной системы. Согласно ГОСТ 18442-80 класс чувствительности контроля определяют в зависимости от минимального размера выявленных дефектов с поперечными размером 0,1 - 500 мкм.

Выявление дефектов, имеющих ширину раскрытия более 0,5 мм, капиллярными методами контроля не гарантируется.

С чувствительностью по 1 классу с помощью капиллярной дефектоскопии контролируют лопатки турбореактивных двигателей, уплотнительные поверхности клапанов и их гнезд, металлические уплотнительные прокладки фланцев и др. (выявляемые трещины и поры величиной до десятых долей мкм). По 2 классу проверяют корпуса и антикоррозийные наплавки реакторов, основной металл и сварные соединения трубопроводов, детали подшипников (выявляемые трещины и поры величиной до нескольких мкм). По 3 классу проверяют крепеж ряда объектов, с возможностью выявления дефектов с раскрытием до 100 мкм, по 4 классу – толстостенное литье.

Чувствительность дефектоскопических материалов, качество промежуточной очистки и контроль всего капиллярного процесса определяются на контрольных образцах (эталонах для цветной дефектоскопии ЦД), т.е. на металлических определенной шероховатости с нанесенными на них нормированными искусственными трещинами (дефектами).

Класс чувствительности контроля определяют в зависимости от минимального размера выявляемых дефектов. Постигаемую чувствительность в необходимых случаях определяют на натурных объектах или искусственных образцах с естественными или имитируемыми дефектами, размеры которых уточняют металлографическими или другими методами анализа.

Согласно ГОСТ 18442-80 класс чувствительности контроля определяется в зависимости от размера выявляемых дефектов. В качестве параметра размера дефекта принимается поперечный размер дефекта на поверхности объекта контроля – так называемая ширина раскрытия дефекта. Поскольку глубина и длина дефекта также оказывают существенное влияние на возможность его обнаружения (в частности, глубина должна существенно больше раскрытия), эти параметры считаются стабильными. Нижний порог чувствительности, т.е. минимальная величина раскрытия выявленных дефектов ограничивается тем, что весьма малое количество пенетранта; задержавшееся в полости небольшого дефекта, оказывается недостаточным, чтобы получить контрастную индикацию при данной толщине слоя проявляющего вещества. Существует также верхний порог чувствительности, который определяется тем, что из широких, но неглубоких дефектов пенетрант вымывается при устранении излишков пенетранта на поверхности.

 

 

Установлено 5 классов чувствительности (по нижнему порогу) в зависимости от размеров дефектов:

Класс чувствительности Ширина раскрытия дефекта, мкм
I Менее 1
II От 1 до 10
III От 10 до 100
IV От 100 до 500
технологический Не нормируется

Для комплексной проверки чувствительности различных методов применяют контрольные образцы с естественными или искусствен­ными дефектами. Образцы с естественными дефектами представля­ют собой части изделия с дефектами, соответствующими 1—4 клас­сам чувствительности.

Наибольшее применение нашли контрольные образцы с искусст­венными дефектами, конструкции и методика изготовления которых регламентирована ГОСТ 23349—78.

Методика изготовления образцов предусматривает создание на их поверхности трещин заданной глубины. Для этого одну из по­верхностей стальных пластинчатых образцов шлифуют и азотируют, благодаря чему поверхностный слой глубиной 0,3...0,4 мм становит­ся хрупким. Далее образцы деформируют, например путем изгиба, вдавливая индентор со стороны, противоположной азотированной. Образование трещин при этом сопровождается характерным хру­стом, а их глубина равна глубине азотированного слоя.

Комплект состоит из двух образцов, один из которых является рабочим для повседневного применения, а второй — контрольным, предназначенным для арбитражных вопросов. Образцы хранятся в футляре, предохраняющем их от загрязнения, и снабжаются аттеста­ционными паспортами, в которых приводятся ширина и протяжен­ность трещин и фотография образца с индикациями дефектов.

Пенетрант и проявитель

Пенетрантом(пенетрант от английского penetrate - проникать) называют капиллярный дефектоскопический материал, обладающий способностью проникать в несплошности объекта контроля и индицировать эти несплошности. Пенетранты содержат красящие вещества (цветной метод) или люминесцирующие добавки (люминесцентный метод), или их комбинацию. Добавки позволяют отличать пропитанную этими веществами область слоя проявителя над трещиной от основного (чаще всего белого) сплошного без дефектов материала объекта (фон).

Индикаторные пенетранты подразделяют:

- в зависимости от физического состояния и светоколористических признаков в соответствии с таблицей 5.

Таблица 5

Физическое состояние индикаторного пенетранта Колористический признак индикаторного пенетранта Колористическая характеристика индикаторного следа дефекта
Раствор Ахроматический Черный, серый, бесцветный
Цветной Имеет характерный цветовой тон при наблюдении в видимом излучении
Люминесцентный Испускает видимое излучение под воздействием длинноволнового ультрафиолетового излучения
Люминесцентно-цветной Имеет характерный цветовой тон при наблюдении в видимом излучении и люминесцирует под воздействием длинноволнового ультрафиолетового излучения
Суспензия Люминесцентный или цветной Скопление люминесцентных или цветных частиц суспензии в устье дефекта

- в зависимости от физических свойств на:

А) нейтральные,

Б) магнитные,

В) электропроводящие,

Г) ионизирующие,

Д) поглощающие ионизирующее излучение,

Е) комбинированные;

- в зависимости от технологических признаков на:

А) удаляемые органическими растворителями,

Б) водосмываемые,

В) водосмываемые после воздействия очистителя или поверхностно-активных веществ,

Г) нейтрализуемые гашением люминесценции или цвета.

Проявителем(проявитель) называют дефектоскопический материал, предназначенный для извлечения пенетранта из капиллярной несплошности с целью образования четкого индикаторного рисунка и создания контрастирующего с ним фона. Таким образом, роль проявителя в капиллярном контроле заключается, с одной стороны, в том, чтобы он извлекал пенетрант из дефектов за счет капиллярных сил, с другой стороны, - проявитель должен создать контрастный фон на поверхности контролируемого объекта, чтобы уверенно выявлять окрашенные или люминесцирующие индикаторные следы дефектов. При правильной технологии проявления ширина следа в 10 ... 20 и более раз может превосходить ширину дефекта, а яркостный контраст возрастает на 30 ... 50 %. Этот эффект увеличения позволяет опытным специалистам даже невооруженным глазом выявлять очень маленькие трещины.

Проявители подразделяют:

- в зависимости от состояния в соответствии с табл. 6.

Таблица 6.

Физическое состояние Принцип действия Характеристика
Порошок Сорбционный Сухой, преимущественно белый сорбент, поглощающий индикаторный пенетрант
Суспензия Преимущественно белый сорбент, поглощающий индикаторный пенетрант диспергированный в летучих растворителях, воде или быстросохнущих смесях
Краска (лак) Диффузионный Связывающий пигментированный или бесцветный быстросохнущий раствор, поглощающий индикаторный пенетрант
Пленка Бесцветная или белая накладная лента с проявляющим, например, липким слоем, поглощающим индикаторный пенетрант, отделяемый г индикаторный следом от контролируемой поверхности

в зависимости от характера взаимодействия проявителя с индикаторным пенетрантомна:

А) химически пассивные, не меняющие колористические свойства индикаторного пенетранта;

Б) химически активные (реактивные) меняющие цвет, способность люминесцировать или дающие продукты реакции, индицирующие дефекты.

Проведение контроля

12.5.1 Основными этапами проведения капиллярного неразрушающего контроля являются:

подготовка объекта к контролю;

обработка объекта дефектоскопическими материалами;

проявление дефектов;

обнаружение дефектов и расшифровка результатов контроля;

окончательная очистка объекта.

12.5.2. Технологические режимы операций контроля (продолжительность, температуру, давление) устанавливают в зависимости от требуемого класса чувствительности, используемого набора дефектоскопических материалов, особенностей объекта контроля и типа искомых дефектов, условий контроля и используемой аппаратуры.

12.5.3. Подготовка объектов к контролю включает очистку контролируемой поверхности и полостей дефектов от всевозможных загрязнений, лакокрасочных покрытий, моющих составов и дефектоскопических материалов, оставшихся от предыдущего контроля, а также сушку контролируемой поверхности и полостей дефектов. Способы очистки контролируемой поверхности приведены ниже:

механический - очистка струёй абразивного материала (песком, дробью, косточковой крошкой) или механической обработкой поверхности;

паровой - очистка в парах органических растворителей;

растворяющий - очистка промывкой, протирка с применением воды, водных моющих растворов или легколетучих растворителей;

химический - очистка водными растворами химических реактивов;

электрохимический - очистка водными растворами химических реактивов с одновременным воздействием электрического тока;

ультразвуковой - очистка растворителями, водой или водными растворами химических соединений в ультразвуковом поле с использованием ультразвукового капиллярного эффекта;

анодно-ультразвуковой - очистка водными растворами химических реактивов с одновременным воздействием ультразвука и электрического тока;

тепловой - очистка прогревом при температуре, не вызывающей недопустимых изменений материала контролируемого объекта и окисления его поверхности;

сорбционный - очистка смесью сорбента и быстросохнущего органического растворителя, наносимой на очищаемую поверхность, выдерживаемой и удаляемой после высыхания.

Примечания:

1. Необходимые способы очистки, их сочетание и требуемую чистоту контролируемых поверхностей определяют в технической документации на контроль.

2. При заданном высоком классе чувствительности контроля предпочтительны не механические, а химические и электрохимические способы очистки, в том числе с воздействием на объект контроля ультразвука или электрического тока. Эффективность этих способов обусловлена оптимальным выбором очищающих составов, режимов очистки, сочетанием и последовательностью используемых способов очистки, включая сушку.

12.5.4. При подготовке объекта к контролю в необходимых случаях проводят работы по снятию или компенсации остаточных или рабочих напряжений в объекте, сжимающих полости искомых дефектов.

При поиске сквозных дефектов в стенках трубопроводных систем, баллонов, агрегатов и аналогичных полостных объектов, заполненных газом или жидкостью и находящихся под избыточным давлением, полости таких объектов освобождают от жидкости и доводят давление газа в них до атмосферного.

12.5.5. Обработка объекта дефектоскопическими материалами заключается в:

заполнении полостей дефектов индикаторным пенетрантом;

удалении избытка индикаторного пенетранта;

нанесении проявителя.

Способы заполнения дефектов индикаторным пенетрантом и их технологическая характеристика указаны ниже:

капиллярный - самопроизвольное заполнение полостей дефектов индикаторным пенетрантом, наносимым на контролируемую поверхность смачиванием, погружением, струёй, распылением сжатым воздухом, хладоном или инертным газом;

вакуумный - заполнение полостей дефектов индикаторным пенетрантом при давлении в их полостях менее атмосферного;

компрессионный - заполнение полостей дефектов индикаторным пенетрантом при воздействии на него избыточного давления;

ультразвуковой - заполнение полостей дефектов индикаторным пенетрантом в ультразвуковом поле с использованием ультразвукового капиллярного эффекта;

деформационный - заполнение полостей дефектов индикаторным пенетрантом при воздействии на объект контроля упругих колебаний звуковой частоты или статического нагружения, увеличивающего минимальный размер дефектов.

Примечание. Для выявления сквозных дефектов пенетрант допускается наносить на поверхность, противоположную контролируемой.

Температура контролируемого объекта и индикаторного пенетранта должна быть в пределах, указанных в технической документации на данный дефектоскопический материал и объект контроля.

Продолжительность заполнения полостей дефектов определяют в технической документации на контроль объектов.

Избыток индикаторного пенетранта удаляют или гасят на контролируемой поверхности с применением очистителя или без него в возможно короткий промежуток времени от момента окончания заполнения полостей дефектов до момента начала проявления.

Способы удаления индикаторного пенетранта приведены ниже:

протирка - удаление индикаторного пенетранта салфетками с применением или без применения очищающего состава или растворителя;

промывка-удаление индикаторного пенетранта водой, специальным очищающим составом или их смесями (погружением, струёй или распыленным потоком);

обдувка - удаление индикаторного пенетранта струёй песка, дроби, косточковой крошки, древесными опилками;

гашение - устранение люминесценции или цвета воздействием гасителя.

При использовании водосмываемых (после воздействия очистителя) индикаторных пенетрантов перед употреблением проявителей любого типа (кроме суспензий на водяной основе) мокрую контролируемую поверхность подвергают естественной сушке или сушке в потоке воздуха. Допускается протирка чистой гигроскопической тканью, ветошью, древесными опилками.

Допускается удалять индикаторный пенетрант обдувкой и гашением без предварительной обработки очистителем и водой.

Проявитель наносят способами, указанными ниже:

распыление - нанесение жидкого проявителя струёй воздуха, хладона, инертного газа или безвоздушным методом;

электрораспыление - нанесение проявителя в электростатическом поле с воздушным или безвоздушным распылением;

воздушной взвеси - нанесение порошкообразного проявителя созданием его воздушной взвеси в камере, где размещен объект контроля;

кистевой - нанесение жидкого проявителя кистью, щеткой или средствами, их заменяющими;

погружение - нанесение жидкого проявителя кратковременным погружением в него объекта контроля;

обливание - нанесение жидкого проявителя обливанием;

электроосаждение - нанесение проявителя погружением в него объекта контроля с одновременным воздействием электрического тока;

посыпание - нанесение порошкообразного проявителя припудриванием или обсыпанием объекта контроля;

наклеивание - нанесение ленты пленочного проявителя прижатием липкого слоя к объекту контроля.

При использовании самопроявляющихся, фильтрующихся и других индикаторных пенетрантов, не требующих нанесения проявителя, последний не наносят.

12.5.6. Проявление следов дефектов представляет собой процесс образования рисунка в местах наличия дефектов. Измерение следов.

Способы проявления индикаторных следов дефектов указаны ниже:

временной - выдержка объектов на воздухе до момента полного и четкого появления индикаторных следов дефектов;

тепловой - нагревание объектов при нормальном атмосферном давлении;

вакуумный - создание вакуума над поверхностью объекта с постоянным или изменяющимся по определенному закону разряжением;

вибрационный - упруго-деформационное воздействие на объект посредством вибрации, циклического или статического его нагружения.

12.5.7. Окончательная очистка объектов представляет собой один или сочетание нескольких технологических приемов удаления проявителя, а, при необходимости, и удаления остатков индикаторного пенетранта.

Способы удаления проявителя приведены ниже:

протирка-удаление проявителя салфетками с применением или без применения воды либо органических растворителей;

промывка - удаление промывкой в воде или органических растворителях с необходимыми добавками и применением вспомогательных средств (щетки, ветоши, губки);

ультразвуковая обработка-удаление проявителя растворителем или моющим раствором при воздействии на него ультразвука;

анодная обработка - электрохимическая обработка водными растворами химических реактивов с одновременным воздействием электрического тока;

обдувка - обработка объекта, покрытого проявителем, абразивным материалом в виде песка, крошки или гидроабразивной смесью;

отклеивание - отделение ленты пленочного проявителя с индикаторным следом дефекта от контролируемой поверхности;

выжигание-удаление проявителя нагреванием объекта до температуры сгорания проявителя;

отслоение - отделение проявителя в виде пленки в жидкостях, не растворяющих проявитель.

12.5.8. Объекты, прошедшие капиллярный контроль, следует подвергать антикоррозионной защите в соответствии с требованиями ГОСТ 9.028-74.