Компоненты ядерного реактора и материалы

Применение Название Компонент Применение Материал
233U, 235U, 239Pu, 241Pu Топливо Для осуществления реакции выделения и выработки энергии  
Обычная вода, тяжелая вода, органические жидкости, CO2, воздух, He, Na, Bi, эвтектика натрий — калий Теплоноситель Для отвода тепла из активной зоны реактора  
Обычная вода, тяжелая вода, графит, Be, оксид бериллия Замедлитель Для замедления быстрых нейтронов деления  
То же, что и в замедли теле Отражатель Для уменьшения утечки нейтронов , для защиты персонала от ионизирующего излучения  
Cd, B, Hf, Gd, Ag, In Управляющие стержни Для контроля критичности и мощности  
Коррозионностойкая Cr—Ni сталь, сплавы на основе Al и Zr Конструкционные материалы Для оболочки топлива, для сооружения активной зоны  
               

Рис. 12.3.Модель радиационных повреждений, возникающих при соударении нейтронов с атомами кристаллической решетки (модель Зеегера)    

 

Соударения вызывают смещения атомов или каскад смещений в решетке в зависимости от количества энергии, передаваемой нейтроном атому металла. Подвергшийся удару нейтроном первый атом, подобно биллиардному шару, ударяя по другим атомам, вызывает в решетке дополнительные смещения. В результате развития каскада образуются объемы с высокой концентрацией вакансий, по периферии окруженные зонами с повышенной плотностью межузельных атомов. Один нейтрон способен создать в алюминии более 6000 вакансий, в бериллии с большей энергией межатомной связи – более 450 вакансий.

Помимо смещений большие нейтронные потоки за счет своей энергии возбуждают атомы, усиливают их колебания (это явление названо «радиационной тряской»), что сопровождается локальным повышением температуры. Рост температуры способствует радиационному отжигу, сопровождающемуся аннигиляцией вакансий и межузельных атомов. Высокие температуры и нейтронное облучение могут вызвать в материале ядерные реакции с образованием гелия, что в свою очередь приводит к появлению газовых пузырей по границам зерен.

Структурные изменения приводят к изменению механических свойств. В результате при температуре ниже температуры рекристаллизации – низкотемпературного облучения – металл упрочняется, но теряет вязкость и пластичность. Влияние суммарного нейтронного потока Ф на временное сопротивление, предел текучести и пластичность аустенитной хромоникелевой стали при 20°С показано на рисунке 4.4. Сталь приобретает максимальное упрочнение при Ф = 3•1019 нейтрон/см2, причем o0,2 растет интенсивнее oв, что приводит к снижению способности к деформационному упрочнению. Дальнейшее увеличение потока практически не влияет на свойства стали.

Рис. 12.4.Изменение механических свойств аустенитной стали 12Х18Н10Т при 20оС после низкотемпературного облучения нейтронами: 1 – oв; 2 – o0,2; 3 – b    

 

 

Кроме флюенса, на свойства оказывает влияние температура, при которой проходит низкотемпературное облучение (рис/4.5). Наиболее резко охрупчиваниеаустенитных сталей проявляется после облучения в температурном интервале 250 – 350°С.

Действие низкотемпературного облучения на свойства металла связано преимущественно с образованием точечных дефектов. В условиях облучения выше температуры рекристаллизации (высокотемпературное облучение) роль точечных радиационных дефектов снижается. Вакансии и межузельные атомы частично аннигилируют друг с другом, частично взаимодействуют с примесями, дислокациями, границами раздела. Оставшиеся межузельные атомы и вакансии объединяются в кластеры, которые в свою очередь могут превращаться соответственно в дислокационные петли межузельного или вакансионного.

Высокотемпературное облучение активизирует диффузионные процессы и способствует распаду пересыщенных твердых растворов – старению. Этим объясняется высокотемпературная хрупкость аустенитных хромоникелевых сталей. Активизацией диффузионных процессов также объясняется снижение длительной прочности при облучении. Падение жаропрочности растет с увеличением температуры и интенсивности нейтронного потока.

При высокотемпературном облучении большими нейтронными потоками в аустенитных сталях и сплавах на основе Ni, Ti, Mo, Zr, Be зарождаются и растут вакансионные поры, а более подвижныемежузельные атомы уходят на дальние стоки (краевые дислокации, границы зерен и др.), что приводит к заметному увеличению объема металла – радиационному распуханию.

Объем аустенитных сталей, облученных при рабочей температуре 450°С, линейно растет с увеличением нейтронного потока. Объем может увеличиться на 20 % и более. Распухание усиливается в результате скопления в микропорах газов, образовавшихся при облучении.

Легирование хромоникелевых сталей титаном, молибденом, ниобием снижает их распухание. Высокохромистые ферритные и перлитные стали с меньшей растворимостью водорода характеризуются меньшей склонностью к распуханию.

Пластичность титановых сплавов после облучения также падает. Однако, в отличие от сталей, они не имеют провала пластичности в этом тем-пературном интервале (рис. 4.6).

Воздействие облучения на полимерные материалы приводит к разрыву полимерных цепочек. Смещение обрывков цепей и свободных радикалов изменяет свойства полимеров и способствует их разрушению.

Примеры изменения свойств некоторых материалов под действием нейтронного облучения приведены в табл. 9.2.

 

Рис. 12.6. Деформационная способность aльфа-сплава титана до (1) и после (2) нейтронного облучения (2•1021 нейтронов/см2; Тобл = 250оС; Е > 1 МэВ)

 

 

При облучении резко снижается коррозионная стойкость металлов и сплавов. Вода и водяной пар являются теплоносителями в водном и водопаровом трактах АЭС. Вследствие радиолиза меняется состав электролита – происходит разрушение молекул воды с образованием ионов и атомов кислорода, водорода и щелочных гидроксид-ионов ОН. Конструкционные реакторные материалы, подвергающиеся облучению, работают в контакте с водой и паром. Образующийся кислород окисляет металл, а водород его наводораживает и тем самым дополнительно охрупчивает. Радиолиз воды и увеличение концентрации гидроксид-ионов способствует растворению поверхностных оксидных пленок, в обычных условиях защищающих металл от коррозии.

Скорость коррозии сплавов на основе алюминия в водной среде в условиях облучения возрастает в 2 – 3 раза. Аустенитные хромоникелевые стали во влажном паре подвержены межкристаллитной коррозии и коррозионному растрескиванию