Лекция 13. Оборудование Ethernet и Fast Ethernet

В этой лекции представлен материал об аппаратуре сети Ethernet/Fast Ethernet: адаптерах, концентраторах, коммутаторах, мостах и маршрутизаторах, их функциях, типах, характеристиках, достоинствах и недостатках.

В настоящее время сеть Ethernet/Fast Ethernet распространена наиболее широко, ее аппаратура выпускается наибольшим числом производителей, и ее перспективы представляются самыми благоприятными. В связи с этим следует более подробно рассмотреть некоторые особенности ее аппаратных средств. Впрочем, многое из сказанного в данном разделе относится не только к Ethernet, но и к аппаратуре других, менее популярных сетей.

Адаптеры Ethernet и Fast Ethernet

Характеристики адаптеров

Сетевые адаптеры(NIC, Network Interface Card) Ethernet и Fast Ethernet могут сопрягаться с компьютером через один из стандартных интерфейсов:

  • шина ISA (Industry Standard Architecture);
  • шина PCI (Peripheral Component Interconnect);
  • шина PC Card (она же PCMCIA);

Адаптеры, рассчитанные на системную шину (магистраль) ISA, еще не так давно были основным типом адаптеров. Количество компаний, выпускавших такие адаптеры, было велико, именно поэтому устройства данного типа были самыми дешевыми. Адаптеры для ISA выпускаются 8- и 16-разрядными. 8-разрядные адаптеры дешевле, а 16-разрядные – быстрее. Правда, обмен информацией по шине ISA не может быть слишком быстрым (в пределе – 16 Мбайт/с, реально – не более 8 Мбайт/с, а для 8-разрядных адаптеров – до 2 Мбайт/с). Поэтому адаптеры Fast Ethernet, требующие для эффективной работы больших скоростей обмена, для этой системной шины практически не выпускаются. Шина ISA уходит в прошлое.

Шина PCI сейчас практически вытеснила шину ISA и становится основной шиной расширения для компьютеров. Она обеспечивает обмен 32- и 64-разрядными данными и отличается высокой пропускной способностью (теоретически до 264 Мбайт/с), что вполне удовлетворяет требованиям не только Fast Ethernet, но и более быстрой Gigabit Ethernet. Важно еще и то, что шина PCI применяется не только в компьютерах IBM PC, но и в компьютерах PowerMac. Кроме того, она поддерживает режим автоматического конфигурирования оборудования Plug-and-Play. Видимо, в ближайшем будущем на шину PCI будет ориентировано большинство сетевых адаптеров. Недостаток PCI по сравнению с шиной ISA в том, что количество ее слотов расширения в компьютере, как правило, невелико (обычно 3 слота). Но именно сетевые адаптеры подключаются к PCI в первую очередь.

Шина PC Card (старое название PCMCIA) применяется пока только в портативных компьютерах класса Notebook. В этих компьютерах внутренняя шина PCI обычно не выводится наружу. Интерфейс PC Card предусматривает простое подключение к компьютеру миниатюрных плат расширения, причем скорость обмена с этими платами достаточно высока. Однако все больше портативных компьютеров оснащается встроенными сетевыми адаптерами, так как возможность доступа к сети становится неотъемлемой частью стандартного набора функций. Эти встроенные адаптеры опять же подключены к внутренней шине PCI компьютера.

При выборе сетевого адаптера, ориентированного на ту или иную шину, необходимо, прежде всего, убедиться, что свободные слоты расширения данной шины есть в компьютере, включаемом в сеть. Следует также оценить трудоемкость установки приобретаемого адаптера и перспективы выпуска плат данного типа. Последнее может понадобиться в случае выхода адаптера из строя.

Наконец, встречаются еще сетевые адаптеры, подключающиеся к компьютеру через параллельный (принтерный) порт LPT. Главное достоинство такого подхода состоит в том, что для подключения адаптеров не нужно вскрывать корпус компьютера. Кроме того, в данном случае адаптеры не занимают системных ресурсов компьютера, таких как каналы прерываний и ПДП, а также адреса памяти и устройств ввода/вывода. Однако скорость обмена информацией между ними и компьютером в этом случае значительно ниже, чем при использовании системной шины. К тому же они требуют больше процессорного времени на обмен с сетью, замедляя тем самым работу компьютера.

В последнее время все больше встречается компьютеров, в которых сетевые адаптеры встроены в системную плату. Достоинства такого подхода очевидны: пользователь не должен покупать сетевой адаптер и устанавливать его в компьютер. Достаточно только подключить сетевой кабель к внешнему разъему компьютера. Однако недостаток состоит в том, что пользователь не может выбрать адаптер с лучшими характеристиками.

К другим важнейшим характеристикам сетевых адаптеров можно отнести:

  • способ конфигурирования адаптера ;
  • размер установленной на плате буферной памяти и режимы обмена с ней;
  • возможность установки на плату микросхемы постоянной памяти для удаленной загрузки (BootROM).
  • возможность подключения адаптера к разным типам среды передачи (витая пара, тонкий и толстый коаксиальный кабель, оптоволоконный кабель);
  • используемая адаптером скорость передачи по сети и наличие функции ее переключения;
  • возможность применения адаптером полнодуплексного режима обмена;
  • совместимость адаптера (точнее, драйвера адаптера ) с используемыми сетевыми программными средствами.

Конфигурирование адаптера пользователем применялось в основном для адаптеров, рассчитанных на шину ISA. Конфигурирование подразумевает настройку на использование системных ресурсов компьютера (адресов ввода/вывода, каналов прерываний и прямого доступа к памяти, адресов буферной памяти и памяти удаленной загрузки). Конфигурирование может осуществляться путем установки в нужное положение переключателей (джамперов) или с помощью прилагаемой к адаптеру DOS-программы конфигурирования (Jumperless, Software configuration). При запуске такой программы пользователю предлагается установить конфигурацию аппаратуры при помощи простого меню: выбрать параметры адаптера. Эта же программа позволяет произвести самотестирование адаптера. Выбранные параметры хранятся в энергонезависимой памяти адаптера. В любом случае при выборе параметров необходимо избегать конфликтов с системными устройствами компьютера и с другими платами расширения.

Конфигурирование адаптера может выполняться и автоматически в режиме Plug-and-Play при включении питания компьютера. Современные адаптеры обычно поддерживают именно этот режим, поэтому их легко может установить пользователь.

В простейших адаптерах обмен с внутренней буферной памятью адаптера (Adapter RAM) осуществляется через адресное пространство устройств ввода/вывода. В этом случае никакого дополнительного конфигурирования адресов памяти не требуется. Базовый адрес буферной памяти, работающей в режиме разделяемой памяти, необходимо задавать. Он приписывается к области верхней памяти компьютера (UMA, Upper Memory Address) в диапазоне адресов A0000h—FFFFFh. В эту же зону адресов помещается и ПЗУ удаленной загрузки (Boot ROM), если предполагается его использование для создания бездисковой рабочей станции. Если используется конфигурирование вручную, то надо следить, чтобы не было конфликтов адресов адаптера с другими устройствами компьютера.

Все операции по конфигурированию сетевого адаптера необходимо проводить в строгом соответствии с документацией, поставляемой вместе с ним, так как каждый из многочисленных производителей адаптеров обычно вносит в них что-то свое, оригинальное. Поэтому никакие более подробные универсальные рекомендации попросту невозможны. Впрочем, это относится к любым электронным устройствам.

От размера буферной памяти адаптера зависит как скорость работы адаптера, так и его способность держать высокие информационные нагрузки. Размер памяти обычно составляет от 8 Кбайт до нескольких мегабайт. Чем больше память, тем больше передаваемых и принимаемых пакетов может в ней храниться. Для адаптеров, работающих на выделенном сервере, большой объем буферной памяти просто необходим, ведь через него пойдут все информационные потоки сети. Впрочем, самая большая буферная память не поможет, если компьютер работает медленно, не успевает перекачивать приходящую по сети информацию.

Для скорости работы адаптера важен режим обмена компьютера с буферной памятью адаптера. Если адаптер поддерживает режим прямого доступа к памяти (DMADirect Memory Access), режим прямого управления шиной (Bus Mastering) или режим разделения памяти, то он обычно работает более производительно, чем адаптеры, не поддерживающие этих режимов. Более того, адаптеры, рассчитанные на быструю шину PCI и работающие в режимах прямого доступа к памяти или прямого управления шиной, могут и не нуждаться в большом объеме буферной памяти, так как информация может передаваться адаптером напрямую в память компьютера и обратно.

Некоторые адаптеры поддерживают функцию удаленной загрузки по сети. Для этого на плате адаптера устанавливается микросхема постоянной памяти (Boot ROM), в которой находится программа начальной загрузки. Такое решение позволяет использовать бездисковые рабочие станции. Но сейчас данная возможность применяется не слишком часто, так как практически все компьютеры оснащены дисководами.

Все функции по обслуживанию обмена по сети в сетевом адаптере, как правило, выполняет одна специализированная микросхема или небольшой комплект микросхем (2—3 штуки). Этим и объясняется достаточно низкая цена адаптеров. Поставщиков подобных комплектов микросхем не так много, поэтому очень многие адаптеры выполнены по сходным схемам. Однако организация обмена шины компьютера с адаптером может быть различной, поэтому показатели производительности адаптеров от разных изготовителей и показатели надежности их работы, особенно в экстремальных условиях, сильно различаются.

Адаптер может быть рассчитан только на один тип среды передачи, к примеру, на витую пару, но может также поддерживать возможность подключения нескольких разных сред передачи, например, тонкий и толстый коаксиальные кабели. Для этого на плате устанавливаются соответствующие разъемы (см. Лекцию 5, раздел "Аппаратура локальных сетей"). Наиболее универсальны так называемые адаптеры "Combo", которые имеют полный набор разъемов (BNC, RJ-45 и AUI для Ethernet). Для выбора конкретного типа среды иногда используются переключатели (джамперы), как правило, их несколько и переключать их надо обязательно все вместе. Иногда выбор среды передачи осуществляется программно.

Адаптеры Fast Ethernet выпускаются как односкоростными (100 Мбит/с), так и двухскоростными (10 Мбит/с и 100 Мбит/с). Двухскоростные платы (их обычно помечают "10/100") несколько дороже односкоростных, но зато они могут работать в любой сети Ethernet/Fast Ethernet без всяких проблем.

Поддержка адаптером полнодуплексного режима обмена по сети пока что встречается нечасто. Это связано с тем, что полнодуплексный режим требует и применения полнодуплексных коммутаторов. Это оказывается очень дорого. Однако для мощных серверов больших сетей поддержка полнодуплексного режима очень желательна.

Все сетевые адаптеры должны быть сертифицированы. Сертификат FCC класса А позволяет использовать адаптер в бизнесе, сертификат FCC класса В – в домашних условиях. Стандарт предусматривает безопасный уровень электромагнитного излучения сетевого адаптера.

При выборе адаптера очень важно обращать внимание на совместимость его драйвера с сетевым программным обеспечением. Все поставщики сетевых программных средств (Novell, Microsoft и др.) проводят работу по сертификации драйверов. Если такой сертификат имеется, то можно быть уверенным, что проблем по совместимости не будет. С другой стороны, все сетевые программные продукты поставляются с набором протестированных драйверов, совместимых с ними. Если драйвер приобретенной платы входит в этот набор, то проблем тоже, скорее всего, не будет. Солидные производители сетевых адаптеров регулярно распространяют обновленные, более быстрые и универсальные версии драйверов для своих плат. Низкая цена некоторых адаптеров может объясняться как раз отсутствием сертификата, плохой совместимостью с программными средствами. Вообще же цены на адаптеры разных фирм и разных типов могут различаться в десятки раз.

Несколько слов о производительности адаптера.

Реальная скорость обмена информацией по сети представляет собой интегральный параметр, зависящий не только от адаптера, но и от компьютера (быстродействия процессора и дисковода, объема системной памяти), среды передачи (уровня помех), программных средств, величины загрузки сети и т.д. Поэтому выбор самого быстрого (и дорогого) адаптера далеко не всегда гарантирует заметный выигрыш в скорости обмена. Например, переход с 8-разрядного адаптера ISA на 16-разрядный или с ISA адаптера на 32-разрядный PCI адаптер может практически не сказаться на скорости. Тем не менее, нередки ситуации, когда именно адаптер становится самым узким местом в системе и его замена может резко увеличить производительность сети.

Косвенные показатели производительности адаптера уже были перечислены: производительнее всего работают те, которые рассчитаны на PCI, поддерживают режим разделения буферной памяти, у которых буферная память большего объема. Быстрее будут те адаптеры, которые максимальное количество функций выполняют без участия процессора, опираясь на встроенный интеллект.

Но получить реальные количественные показатели производительности можно только в результате тестирования сети в целом. Для этого существует целый ряд тестовых программ, наиболее известные Perform3 компании Novell и Netbench 3.0 фирмы Ziff-Davis. Любые тестовые программы слабо отражают реальную ситуацию в сети, но позволяют сравнивать между собой различные сетевые адаптеры в условиях, близких к реальным и в реальной конфигурации аппаратных средств.