Развитие биологической реакции на действие эффектора. Многоканальная система передачи сигнала.

Многоячеечные системы. Каждая ткань животного - почки, печень, сердце, мозг или жировые отложения (ткани) - рассматривается как ячейка. После того как вещество попадает в организм, оно начинает перемещаться током крови. Каждая ячейка характеризуется своим размером, содержанием жи­ра, скоростью тока крови, коэффициентом распределения, определяющим способность вещества перемещаться из крови в ткань. Определив скорость поглощения и скорость выведения вещества, а также подобрав соответствующие математические соотношения, можно с помощью ЭВМ создать модели многоячеечной системы. В рамках разработанной модели возможно провести анализ взаимного влияния различных переменных и прогнозировать те ситуации, которые невозможно воспроизвести экспериментально.

В действительности же каждое звено развития индуцированного процесса может служить источником стимула для нескольких элементов. В результате, наблюдая за развитием реакции, мы регистрируем при малых концентрациях лишь сигнал, распространяющийся через наиболее чувствительный канал, связывающий элементы С и ρ (рисунок 13). По мере увеличения примененной концентрации проявляются эффекты иных каналов связи, сигналы которых, очевидно, могут отличаться по знаку (вклад отдельных сигналов может быть как положительным (стимулирующим реакцию), так и отрицательным (угнетаю­щим).

Здесь можно рассмотреть два случая: 1) лиганд взаимодей­ствует с мембранактивными центрами одного типа, а диффе­ренциация характера действия происходит на каких-то следу­ющих стадиях; 2) лиганд взаимодействует с центрами разных типов, каждый из которых инициирует процесс, различающий­ся по конечному эффекту в отношении регистрируемой реакции.

В первом случае справедливо представить реакцию в ви­де ρ = f(Z).

Второй случай – взаимодействие вещества с несколькими типами рецепторов (взаимодействие может происходить не только со специфи­ческими рецепторами, но и с другими центрами связывания). Известно, например, что некоторые биологически активные пептиды уже в довольно низких концентрациях способны дей­ствовать неспецифически, т. е. помимо рецепторов модифици­ровать свойства клеточных мембран. Это несомненно должно отразиться и на развитии регистрируемой реакции.

 

Рисунок 13 – Схема формирования реакции р под влиянием эффектора С, распространяющегося по нескольким путям. Каналы qt могут характеризоваться существенно различающимися константами сродства к эффектору

Мембранотроптое действие какого-либо вещ-ва – прямая или косвенная модификация мембранных структур, вызываемая соответствующими соединениями, и наступающие в результате этого изменения свойств биологической мембраны. Классификация мембранотропных эффектов: 1) «специфическое» или «неспецифическое» действие хим. соед. 2) Хим соед: эндогенные продукты и «посторонние» по своей хим природе вещ-ва. 3) Вещ-ва прямого мембранотропного действия и агенты, действующие косвенно ч/з вмешательство в ц/п метаболизм или иным косвенным путем.4) Мембранотропные агенты по характеру вызываемых ими функциональных сдвигов: соед., влияющие на транспорт веществ ч/з мембрану (активный или пассивный). Типы мембранотропности: 1.мембранная рецепция - вещество не проникает внутрь клетки, избирательно накапливается в мембранах, эффекты отсутствуют в бесклеточных системах, не содержат мембранной фракции. Это прямая мембранотропность. 2. стимуляция или угнетение биосинтетических процессов, протекающих в мембранах. 3. изменения под влиянием ксенобиотиков барьерно-транспортных свойств мембраны. 4. функциональное взаимодействие с веществами (стимуляция или угнетение под влиянием ксенобиотиков гормональных веществ, природных соединений.). Процесс мембранотропности делится на три части: а) установление характера и локализация центров связывания; б) оценка сродства к ним эффектора; в) исследование развития реакции объекта на образование комплексов центров связывания с молекулами эффектора.

При обработке клеток поэтапно увеличивающейся концентрацией детергента ПАВ выявлены четыре различные стадии: 1. связывание де­тергента с мембраной, при низких концентрациях молекулы детергента связываются с мембранами, вероятно, посредством внедрения во внешнюю фазу ли­пидного бислоя без существенного изменения его структуры. 2. лизис, при повышении концентрации мономеров до определенной ве­личины количество молекул детергента становится достаточным для дестабилизации мембраны. Встрайваясь пав в мембрану, обра­зовывание пор, поры деформируются в виде связанных каналов или в виде выемок на поверхности мембраны. 3. диссоциация мембраны на смесь ком­плексов липид-детергент, протеин-липид-детергент. При еще больших концентрациях вся мембрана перемешивается с молекулами детергента, что приводит к фазовому переходу - мем­брана распадается на смесь мицелл, содержащих комплексы детер­гент-липид или детергент—липид-протеин. 4. высвобождение из комплексов чистых белков. При последующем увеличении концентрации ПАВ отношение липид-белок уменьшается до тех пор, пока не происходит полное раз­деление фракций белков и липидов.

Мембраны обладают селективностью(избирательностью) по отношению к различным веществам. Коэфициенты проницаемости различаются. Молекулярные структуры упорядочены по особенному.

ПАВ мало: большая часть молекул, связывающихся с мембраной, «разрыхляет» удаленные участки мембраны и каждая их них действует независимо. Селективность снижается.

ПАВ много: молекулы располагаются плотнее и присутствие одной из них усиливает эффект другой. Еще больше снижается селективность.