Потери и коэффициент полезного действия коллекторной машины постоянного тока

 

В машинах постоянного тока, как и в других электрических машинах, имеют место магнитные, электрические и механические потери (составляющие группу основных потерь) и добавочные потери.

Магнитные потери происходят только в сердечнике якоря, так как только этот элемент магнитопровода машины постоянного тока подвергается перемагничиванию. Величина магнитных по­терь, состоящих из потерь от гистерезиса и потерь от вихревых токов, зависит от частоты перемагничивания значений магнитной индукции в зубцах и спинке якоря, толщины листов электротехнической стали, ее магнитных свойств и качества изо­ляции этих листов в пакете якоря.

Электрические потери в коллекторной машине постоянного тока обусловлены нагревом обмоток и щеточного контакта. Поте­ри в цепи возбуждения определяются потерями в обмотке возбуж­дения и в реостате, включенном в цепь возбуждения:

(29.18)

Здесь — напряжение на зажимах цепи возбуждения. Потери в обмотках цепи якоря

(29.19)

где сопротивление обмоток в цепи якоря , приведенное к рас­четной рабочей температуре , определяется по (13.4) с учетом данных, приведенных в § 13.1 и § 8.4.

Электрические потери также имеют место и в контакте щеток:

(29-20)

где — переходное падение напряжения, В, на щетках обеих полярностей, принимаемое в соответствии с маркой щеток по табл. 27.1.

Электрические потери в цепи якоря и в щеточном контакте за­висят от нагрузки машины, поэтому эти потери называют пере­менными.

Механические потери. В машине постоянного тока механиче­ские потери складываются из потерь от трения щеток о коллектор

(29.21)

трения в подшипниках и на вентиляцию

(29.22)

где — коэффициент трения щеток о коллектор — поверхность соприкосновения всех щеток с коллектором, м2; — удельное давление, Н/м2, щетки [для машин общего назначе­ния =(2÷3)·104 Н/м2];

окружная скорость коллектора (м/с) диаметром (м)

. (29.23)

Механические и магнитные потери при стабильной частоте вращения можно считать постоянными.

Сумма магнитных и механических потерь составляют потери х.х.:

. (29.24)

Если машина работает в качестве двигателя параллельного возбуждения в режиме х.х., то она потребляет из сети мощность

. (29.25)

Однако ввиду небольшого значения тока электрические по­тери и весьма малы и обычно не превышают 3% потерь . Поэтому, не допуская заметной ошибки, можно записать , откуда потери х.х.

. (29.26)

Таким образом, потери х.х. (магнитные и механические) могут быть определены экспериментально.

В машинах постоянного тока имеется ряд трудно учитывае­мых потерь — добавочных. Эти потери складываются из потерь от вихревых токов в меди обмоток, потерь в уравнительных соедине­ниях, в стали якоря из-за неравномерного распределения индукции при нагрузке, в полюсных наконечниках, обусловленных пульса­цией основного потока из-за наличия зубцов якоря, и др. Добавоч­ные потери составляют хотя и небольшую, но не поддающуюся точному учету величину. Поэтому, согласно ГОСТу, в машинах без компенсационной обмотки значение добавочных потерь принимают равным 1% от полезной мощности для генераторов или 1% от подводимой мощности для двигателей. В машинах с компенсационной обмоткой значение добавочных потерь прини­мают равным соответственно 0,5%.

Мощность (Вт) на входе машины постоянного тока (подводимая мощность):

для генератора (механическая мощность)

(29.27)

где — вращающий момент приводного двигателя, Н∙м;

для двигателя (электрическая мощность)

. (29.28)

Мощность (Вт) на выходе машины (полезная мощ­ность):

для генератора (электрическая мощность)

; (29.29)

для двигателя (механическая мощность)

. (29.30)

Здесь и — момент на валу электрической машины, Н-м; — частота вращения, об/мин.

Коэффициент полезного действия. Коэффициент полезного действия электрической машины представляет собой отношение мощностей отдаваемой (полезной) к подводимой (потребляе­мой) ,:

.

Определив суммарную мощность вышеперечисленных потерь

, (29.31)

можно подсчитать КПД машины по одной из следующих формул:

для генератора

; (29.32)

для двигателя

. (29.33)

Обычно КПД машин постоянного тока составляет 0,75—0,90 для машин мощностью от 1 до 100 кВт и 0,90—0,97 для машин мощностью свыше 100 кВт. Намного меньше КПД машин посто­янного тока малой мощности. Например, для машин мощностью от 5 до 50 Вт = 0,15÷0,50. Указанные значения КПД соответст­вуют номинальной нагрузке машины. Зависимость КПД маши­ны постоянного тока от нагрузки выражается графиком , форма которого характерна для электрических машин (рис. 29.13).

 

Рис. 29.13. Зависимость

 

Коэффициент полезного действия электрической машины можно определять: а) методом непосредственной нагрузки по ре­зультатам измерений подведенной и отдаваемой мощностей; б) косвенным методом по результатам измерений потерь.

Метод непосредственной нагрузки применим только для ма­шин малой мощности, для остальных случаев применяется кос­венный метод, как более точный и удобный. Установлено, что при > 80 % измерять КПД методом непосредственной нагрузки неце­лесообразно, так как он дает большую ошибку, чем косвенный метод.

 

Существует несколько кос­венных способов определения КПД. Наиболее прост способ хо­лостого хода двигателя, когда потребляемая машиной постоян­ного тока мощность затрачивает­ся только на потери х.х. [см. (29.26)]. Что же касается элек­трических потерь, то их определяют расчетным путем после пред­варительного измерения электрических сопротивлений обмоток и приведения их к рабочей температуре.

Пример 29.1. Двигатель постоянного тока параллельного возбуждения (см. рис. 29.3) включен в сеть с напряжением 220 В. При номинальной нагрузке и частоте вращения об/мин он потребляет ток = 43 А. Определить КПД двигателя при номинальной нагрузке, если ток х.х. = 4 А, а сопротивления цепей якоря = 0,25 Ом и возбуждения = 150 Ом. При каком добавочном сопротивлении , включенном последовательно в цепь якоря, частота вращения двигателя будет = 1000 об/мин (нагрузочный момент )?

Решение. Ток возбуждения = 220/150 =1,47 А. Ток якоря в ре­жиме х.х. = 4 - 1,47 = 2,53 А. Ток якоря номинальный = 43 - 1,47 = 41,53 А. Сумма магнитных и механических потерь = 220- 2,53 -2,532- 0,25 = 555 Вт. Электрические потери в цепи возбуждения по (29.18)

Вт.

Электрические потери в цепи якоря по (29.19)

Вт.

Электрические потери в щеточном контакте по (29.20)

Вт.

Подводимая к двигателю мощность по (29.28)

Вт.

Добавочные потери

Вт.

Суммарные потери по (29.31)

Вт.

Полезная мощность двигателя

Вт.

КПД двигателя при номинальной нагрузке

.

Из выражения (29.5) получим

ЭДС якоря при частоте вращения 1000 об/мин по (25.20)

В.

Так как ток якоря прямо пропорционален моменту [см (25.24)], то при сила тока после включения останется прежней А. Из выражения тока якоря (29.2) получим

Ом.

Электрические потери в добавочном сопротивлении

Вт.

Полезная мощность двигателя при частоте вращения 1000 об/мин

Вт.

Расчет полезной мощности является приближенным, так как он не учиты­вает уменьшение механических потерь двигателя при его переходе на меньшую частоту вращения.

 

§ 29.9. Машины постоянного тока серий 4П и 2П

 

Стремительное развитие автоматизации производства привело к необходимости создания двигателей постоянного тока с широ­ким диапазоном регулирования частоты вращения (до 1:1000) с хорошими динамическими свойствами. Этим требованиям соот­ветствуют двигатели серии 4П. Серия охватывает двигатели с вы­сотой оси вращения от 80 до 450 мм следующих модификаций.

Двигатели типа 4ПО и 4ПБ охватывают диапазон мощности от 0,126 до 5,5 кВт при номинальной частоте вращения от 750 до 3000 об/мин. Двигатели допускают регулирование частоты враще­ния вниз от номинальной уменьшением напряжения на обмотке якоря при снижении тока до 0,5 . А так же вверх от номиналь­ной (уменьшением тока возбуждения) в пределах максимальной частоты вращения, которая превышает номинальную в среднем в 1,35— 1,8 раза.

Конструкция этих двигателей унифицирована с асинхронны­ми двигателями серии 4А. Это позволило применить для произ­водства некоторых узлов двигателей типа 4ПО и 4ПБ технологи­ческое оборудование, применяемое в производстве двигателей серии 4А. В унифицированной конструкции этих двигателей магнитопровод статора неявнополюсный с распределенными в пазах обмотками. Так, обмотка возбуждения (независимая) укладывает­ся в два паза в пределах каждого полюсного деления, остальные пазы занимает компенсационная обмотка. В двигателях типа 4ПО и 4ПБ и двигателях серии одинакового габарита могут быть применены одинаковые станины, задние подшипниковые шиты, коробки выводов, подшипники и т. п.

Применение распределенных обмоток на статоре двигателей типа 4ПО и 4ПБ улучшило процесс охлаждения и позволило уве­личить токовые нагрузки на обмотки возбуждения и компенсаци­онную. Кроме того, распределенная конструкция обмоток статора способствует лучшей компенсации реакции якоря и улучшению коммутации.

Двигатели постоянного тока типов 4ПО и 4ПБ имеют закры­тое исполнение со степенью защиты IР44 со способами охлаждения IС0141 (наружный обдув) в двигателях типа 4ПО (рис. 29.14) и IС0041 (естественное охлаждение) в двигателях типа 4ПБ.

 

Рис. 29.14. Двигатель постоянного тока типа 4IIО унифицированной конструкции;

/ — корпус; 2 — магнитопровод статора с распределенными обмотками; 3 — шит подшипниковый передний; 4 — сердечник якоря; 5 — вентилятор, 6 — ко­жух вентилятора; 7 — коробка выводов; 8 — коллектор, 9 — траверса.

 

Широкорегулируемые двигатели типа 4ПФ предназначены для привода станков с программным управлением, роботизиро­ванных производственных комплексов. Исполнение двигателей по степени защиты IР23 (защищенные), способ охлаждения IС06 (независимая вентиляция). Двигатели охватывают номинальные мощности от 2,0 до 250 кВт при высоте оси вращения от 112 до 250 мм. Напряжение питания 220 и 440 В. Регулирование частоты вращения возможно изменением подводимого к обмотке якоря напряжения от 0 до 460 В. Допускается также регулирование частоты вращения ослаблением поля возбуждения (уменьшением тока в обмотке возбуждения).

Статор двигателей восьмигранный шихтованный, явнополюсный (рис. 29.15). Пакет статора запрессован между двумя нажимными плитами толщиной 10 мм. Подшипниковые шиты литые чугунные.

 

Рис. 29.15. Двигатель постоянного тока типа 4ПФ:

1 — траверса; 2 — вентилятор наружный; 3 — коллектор; 4 — обмоткодержатель якоря; 5 — нажимная плита статора; 6 — подшипниковый щит; 7 — обмотка ком­пенсационная; 8 — дополнительный полюс; 9 — статор; 10 — обмотка независи­мого возбуждения; 11 — балансировочное кольцо

 

Катушки возбуждения намотаны на главные полюса, катушки дополнительной обмотки надеты на добавочные полюса, компенсационная обмотка расположена в пазах полюсных наконечников.

Наружный вентилятор может быть снабжен фильтром для очистки воздуха от пыли и мелких частиц. Вентилятор располо­жен на боковой или торцевой поверхности со стороны коллектора.

Крупные двигатели 4П для тяжелых условий эксплуатации предназначены для привода крупных металлорежущих станков, механизмов металлургического производства, с частыми пусками, остановками, реверсами, набросами и неравномерностью нагруз­ки. Двигатели изготавливаются с высотой оси вращения 355 и 450 мм мощностью от 110 до 800 кВт; напряжение питания 440 и 600 В. Возбуждение независимое напряжением 220 В. Вентиляция от постороннего вентилятора. Двигатели имеют степень защиты IР44 и IР23.