Этапы деятельности человека-оператора 3 страница

Рис. 1.4. Особенности СЧМ, учитываемые при инженерно-психологическом (прерывистый контур) и эргономическом (сплошной контур) подходе к ее анализу и синтезу (по Ю.Г. Фокину).

Сейчас пока еще трудно однозначно сказать, какое из этих мнений является правильным. Важно отметить другое. В любом случае эргономика не подменяет, не заменяет, не поглощает ни физиологию, ни гигиену труда, ни инженерную психологию, никакую другую науку. Включаясь в эргономический комплекс с целью решения тех или иных задач, ни одна из них не теряет своей самостоятельности.

Еще одним научным комплексом является наука управления. В настоящее время повышение «удельно­го веса» социальных и организационных факторов на производстве выдвигает необходимость помимо изуче­ния систем «человек — машина» интенсивно исследо­вать системы «человек — коллектив — техника — сре­да», иначе: «социотехнические системы». На этой основе рождается новый научный комплекс — наука управления. В рамках этого комплекса инженерная психология также не теряет самостоятельности, объе­диняется с экономикой, организацией труда, социоло­гией, социальной психологией и рядом других дисцип­лин, изучающих социотехнические системы. Важное место в этом комплексе занимает психология управле­ния, включающая в себя функционально-структурный анализ организационных систем и управленческой деятельности, психологический анализ построения, эксплуатации и использования в народном хозяйстве АСУ организационного типа (АСУП, ОАСУ и др.), со­циально-психологический анализ производственных и управленческих коллективов с исследованием психо­логии руководства.

Таким образом, в психологии управления осуществ­ляется переход от «операторской» психологии к анали­зу деятельности проектировщиков и конструкторов АСУ, а также обслуживающего персонала этих систем. Глав­ное здесь — глубокое изучение психологических осо­бенностей, структуры, механизмов управленческих про­цессов, управленческой деятельности в целом.

Из рассмотренного видно, что управленческая дея­тельность выходит за рамки инженерной психологии и не может быть понята без социально-психологического анализа процессов управления. Однако точно так же она не может быть изучена и без инженерно-психологичес­кого анализа социотехнических систем. В этом заключа­ется прямая взаимосвязь инженерной психологии и науки управления (точнее, той ее части, которая отно­сится к психологии управления). Дальнейшее развитие психология управления получила в последнее время, когда в ее рамках возникло новое научное направление — психология менеджмента. Оно ориентировано на пси­хологическое обеспечение эффективной жизнедеятель­ности (функционирования) организаций в рыночных условиях хозяйственных отношений. Для успешного выполнения своих обязанностей современный менед­жер (от английского menedement —управление) должен обладать серьезными психологическими знаниями, а при работе его в промышленности, транспорте, системах связи в этом комплексе знаний велика роль инженер­ной психологии и психологии труда. Более подробно этот вопрос рассмотрен в последней главе.

Инженерная психология связана также с кибер­нетикой и системотехникой. Системотехника пред­ставляет собой новое научное направление, находя­щееся в стадии формирования. В настоящее время системотехника понимается как техническая наука об общих принципах создания, совершенствования и использования технических систем. Вполне очевидно, что системотехническое проектирование немыслимо без учета человеческого фактора, проектирования операторской деятельности, без других данных инже­нерной психологии,

Кибернетика представляет собой науку об общих закономерностях процессов управления в системах различного характера (живых организмах, технике, обществе). Значение кибернетики для инженерной психологии заключается в том, что она позволяет по­дойти к изучению и описанию с единых позиций таких качественно разнородных составляющих СЧМ, каки­ми являются человек и машина.

Однако при решении инженерно-психологических задач такое рассмотрение человека и машины в СЧМ является не более чем просто методическим приемом, искусственным методом, позволяющим соотносить между собой различные составляющие СЧМ. При этом нельзя, конечно, забывать о специфичности деятель­ности человека, подчиняющейся биологическим и пси­хологическим законам, и работы машины, которая под­чиняется физическим и химическим законам.

Большое значение для инженерной психологии имеет использование математических методов. Это особенно важно в настоящее время, когда становится очевидной проектировочная сущность инженерной психологии. Хорошо известно, что любой проект (а про­ектирование деятельности оператора не составляет, очевидно, исключения) предполагает обязательное использование и получение тех или иных количествен­ных характеристик и соотношении. И здесь не обой­тись без математики. Как известно, К. Маркс считал, что наука только тогда достигает совершенства, когда ей удается пользоваться математикой [23, с. 66]. В нас­тоящее время инженерная психология уже достигла та­кого уровня развития. Математические методы широко применяются для построения моделей деятельности оператора, при планировании и обработке результатов инженерно-психологических экспериментов, при полу­чении количественных оценок деятельности оператора и т. д. Однако правильное применение математических методов невозможно без учета психологических и пси­хофизиологических закономерностей операторской де­ятельности, без опоры на ее содержательную сторону. Поэтому существующие разделы математики не все­гда могут быть просто перенесены в область инженер­ной психологии.

В последние годы усиливаются взаимосвязи меж­ду инженерной психологией и экономикой. Это обус­ловлено развитием техники и технологий, совершен­ствованием системы экономического планирования и управления производством, что открывает мощные резервы роста производительности труда и повыше­ния эффективности производства. Однако они могут быть по-настоящему реализованы только при условии развития творческой активности человека. Поэтому наряду с резервами, создаваемыми научно-техничес­ким прогрессом, все большее значение на современ­ном этапе приобретают резервы главной производи­тельной силы общества — человека. Возрастает роль психологических факторов как одного из важнейших условий интенсификации экономики [156].

Большая роль в решении данного вопроса принадле­жит инженерной психологии, которая непосредственно включается в процесс совершенствования рыночных от­ношений в нашей стране. Использование ее достижений в общественной практике становится важнейшим усло­вием роста производительности и качества труда, повы­шения эффективности управления народным хозяйством, совершенствования современной техники и технологий, дальнейшего развития системы профессиональной под­готовки и охраны труда, воспитания в процессе труда нового человека [92,94]. Все это в конечном итоге опреде­ляет экономическое значение инженерной психологии.

Связь эта взаимная. Широкое внедрение инженер­но-психологических разработок в практику народного хозяйства оказывает существенное влияние на экономи­ческие показатели отдельных подразделений и предпри­ятий. В свою очередь, высокая экономическая эффектив­ность этих разработок способствует более быстрому и широкому их внедрению, возрастанию авторитета науч­ных исследований в области инженерной психологии. Это оказывает существенное влияние на развитие даль­нейших исследований в данной области [169].

Заканчивая рассмотрение междисциплинарных связей инженерной психологии, необходимо остановить­ся на ее месте в системе подготовки современного инженера. Изучение инженерной психологии базиру­ется на некоторых разделах ряда учебных дисциплин.

Знания из области физики необходимы при про­ведении инженерно-психологических измерений и экспериментов, при изучении характеристик анали­заторов человека, при пользовании различного рода измерительными приборами. Математические знания нужны при изучении количественных характеристик деятельности оператора. Политическая экономия спо­собствует правильному пониманию роли и места чело­века при различных способах производства. Без опо­ры на общую теорию надежности затруднено изучение надежности оператора и системы «человек — маши­на». Знание возможностей и принципов построения ЭВМ помогает в изучении вопросов распределения функций между человеком и машиной и моделирова­ния деятельности оператора.

Помимо этого инженерная психология является базой для изучения таких дисциплин по профилю под­готовки студента, как конструирование аппаратуры, техническая эксплуатация, охрана труда и техника бе­зопасности, экономика и организация промышленного производства и др. Для изучения этих дисциплин нуж­ны сведения о характеристиках и возможностях чело­века, его свойствах и состояниях в процессе труда.

Глава II. ИНФОРМАЦИОННОЕ ВЗАИМОДЕЙСТВИЕ МЕЖДУ ЧЕЛОВЕКОМ И МАШИНОЙ

2.1. Общие понятия об информации

Понятие информации имеет фундаментальное зна­чение для инженерной психологии. Это обусловлено тем, что содержание функций человека в СЧМ состав­ляют информационные процессы передачи, переработ­ки, хранения и реализации информации, а информа­ционное взаимодействие между человеком и машиной составляет предмет инженерной психологии. Поэтому для решения многих инженерно-психологических про­блем весьма важно решение двух взаимосвязанных задач: во-первых, изучение закономерностей инфор­мационной деятельности человека, и во-вторых, орга­низация процесса обмена информацией между чело­веком и машиной в СЧМ. Теоретической базой для изучения информационных процессов является теория информации, основные положения которой разработал применительно к техническим каналам связи извест­ный американский ученый К. Шеннон. Эти положения он опубликовал в широко известной статье «Матема­тическая теория связи» (1948 г.). Основная идея К. Шен­нона заключается в том, что с информацией можно обращаться почти так же, как с другими физическими категориями, какими являются вещество и энергия. Поэтому информация не может быть определена че­рез эти категории и является наряду с ними одной из трех самостоятельных субстанций окружающего нас мира. Следовательно, согласно К. Шеннону, и транс­портировка (передача) информации может рассматри­ваться подобно транспортировке вещества и энергии.

Несмотря на частое использование термина «ин­формация» в различных сферах жизни и деятельности человека однозначного определения этого понятия пока не существует. Мы будем понимать под информацией совокупность сведений, уменьшающих неопределен­ность в выборе различных возможностей. При таком подходе понятие информации связывается с понятия­ми вероятности, энтропии, ансамбля, неопределеннос­ти выбора, неожиданности появления события и с ло­гарифмической функцией при некотором постоянном основании логарифма. Именно такой подход применя­ется в теории информации (статистической теории связи). Необходимо отметить, что такое определение информации существенно отличается от обыденного значения этого слова.

В инженерной психологии более конкретно под информацией понимают любые изменения в управ­ляемом процессе, отображаемые на средствах отобра­жения информации или непосредственно восприни­маемые оператором, а также команды, указания о необходимости осуществления тех или иных воздей­ствий на процесс управления. Любое сообщение ин­формативно, если оно представляет то, чего человек не знал до его поступления. Сообщение представляет собой совокупность сведений о некоторой физической системе.

Применительно к деятельности оператора сообще­ние — совокупность зрительных, слуховых и других сигналов, воспринимаемых им в данный момент вре­мени, а также «сигналов», хранимых в памяти операто­ра [26]. Сообщение приобретает смысл (содержит не­которое количество информации) только тогда, когда состояние системы заранее неизвестно, случайно, т. е. системе присуща какая-то степень неопределенности. В качестве меры неопределенности в теории информа­ции используется понятие энтропии. Неопределенность системы уменьшается при получении каких-либо све­дений об этой системе. Чем больше объем полученных сведений, чем они более содержательные, тем большей информацией о системе можно располагать. На этом основании базируется подход к определению количе­ства информации, в соответствии с которым количество информации измеряется уменьшением энтропии той системы, для уточнения состояния которой предназна­чены эти сведения. Другими словами, мерой количе­ства информации является снятая неопределенность (снятая энтропия). Подробнее этот вопрос рассматри­вается в следующем параграфе.

Материальным носителем информации является сигнал (от лат. signum — знак). Сигнал — это процесс или явление (внешнее или внутреннее, осознанное или неосознанное), несущее сообщение о каком-либо собы­тии и ориентирующее человека относительно этого события. В психологии такие сигналы называют также раздражителями. В соответствии с характером анали­заторов (органов чувств) и других воспринимающих систем выделяются сигналы: оптические, акустические, механические, термические, электромагнитные, хими­ческие и др. Сигнал, являясь носителем сообщения, содержит в себе определенную информацию для по­лучателя. Вне сигналов информация не существует. В то же время она не зависит от конкретных физичес­ких (и вообще материальных) свойств сигналов. Одна и та же информация может быть передана различны­ми сигналами. Например, одна и та же информация о состоянии объекта управления может быть передана оператору с помощью оптических (показание прибо­ра), звуковых (сирена, голос), тактильных (вибрация руля управления) и других сигналов [128].

Связь между сигналом и характером вызываемых им информационных процессов составляет смысловое содержание сигнала. Смысл сигнала (в отличие от количества информации) не является объективным свойством его источника: один и тот же сигнал может интерпретироваться различными получателями по разному и, напротив, в определенных ситуациях раз­личные сигналы могут оцениваться как имеющие один и тот же смысл. Таким образом, смысл сообщения определяется его субъективной интерпретацией полу­чателем (оператором). Это положение имеет важное значение для любой человеческой деятельности, но оно, к сожалению, лежит вне рамок статистической теории информации, что существенно ограничивает возмож­ности ее применения в инженерной психологии.

Связь между сигналом и несущей им информаци­ей базируется на принципе изоморфизма (от лат. isos — равный и morphes— форма). Под ним понимается общая форма взаимной упорядоченности двух мно­жеств. Изоморфизм представляет собой однозначное свойство элементов и отношений двух множеств. На­пример, множество состояний звукового давления и множество состояний намагничивания на магнитной ленте являются изоморфными. Множество возбужде­ний зрительного нерва, возникающих под воздействи­ем световых волн, действующих на сетчатку глаза, находится в соотношении изоморфизма с источником информации. Это множество нервных импульсов яв­ляется нервными сигналами действующего источника.

Понятие изоморфизма имеет важное значение при анализе информационных процессов. Это обусловле­но тем, что сигнал представляет собой множество со­стояний своего носителя, изоморфное множеству со­стояний источника. Изоморфное отношение множества состояний носителя информации к множеству — ис­точнику, определяющее лишь общую упорядоченность двух множеств, делает сигнал кодом источника инфор­мации. Благодаря кодированию, производится перевод упорядоченности состояний источника в определенную упорядоченность носителя. Например, множество то­чек звуковой дорожки на пластинке, упорядоченное в пространстве, представляет собой код множества со­стояний звукового давления, упорядоченного во вре­мени. Таким образом, благодаря изоморфизму, инфор­мация несет сведения о своем источнике [8].

Используемая в деятельности оператора информа­ция классифицируется по ряду признаков. Выше уже отмечалось, что в зависимости от модальности (вида) сигнала информация может быть зрительной, слухо­вой, тактильной, проприоцептивной (отражает харак­тер движений человека) и др. По значению информа­ция подразделяется на командную (дает указания о необходимости проведения определенных действий) и осведомительную (дает представление о сложившейся ситуации). По своему характеру информация может быть релевантной (полезной, относящейся к решаемой в данный момент задаче) и иррелевантной (бесполез­ной, ненужной в данной ситуации; такая информация может оказаться и вредной с точки зрения эффектив­ности работы оператора, тогда она называется поме­хой) . Иррелевантную информацию не следует путать с избыточной информацией, которая во многих случаях оказывает положительное влияние на деятельность оператора.

С точки зрения полноты информация подразделя­ется на избыточную и безызбыточную. Введение из­быточности (изображение, естественный язык, приме­нение специальных помехоустойчивых кодов и др.) является эффективным средством борьбы с помехами, повышает помехоустойчивость работы оператора. С этой же точки зрения информация может быть полной и неполной. По форме информация может быть количественной (несет количественные харак­теристики объекта управления) и качественной (не­сет модальные, качественные характеристики: боль­ше — меньше, выше — ниже; правый крен, левый крен, отсутствие крена и т. п.). Несмотря на свой качествен­ный характер такая информация тем не менее также может быть оценена количественно.

С точки зрения искажений информация может быть достоверной (истинной) и недостоверной (ложной, искаженной). Последняя, если ее вовремя не распоз­нать, может внести дезорганизацию в процесс управ­ления. Недостоверная информация может возникнуть как вследствие сбоев в работе технических средств, так и вследствие ошибок операторов. В зависимости от источника поступления информация делится на при­борную (инструментальную) и неинструментальную. Приборная информация поступает к оператору со средств отображения информации, как правило, в за­кодированном виде. Для уяснения смысла такой инфор­мации оператору нужно провести ее декодирование, т. е. привести ее к исходному виду. Неинструменталь­ная информация непосредственно поступает на орга­ны чувств оператора. Она присутствует практически во всех видах операторской деятельности, однако ее роль и значение для многих из них существенно раз­ная. Так, для операторов АСУ ее роль крайне мала, хотя и здесь в ряде случаев появление необычных запахов, вибраций, шумов может нести информацию об изме­нении режима работы системы, возникновению непо­ладок в ее работе. Опытный сталевар управляет про­цессом плавки не только с помощью приборов, но и учитывает при этом цвет металла и другие его харак­теристики. Исключительную роль неинструментальная информация имеет при проведении органолептических исследований, то есть при измерении и оценке тех или иных показателей с помощью органов чувств (на­пример, визуальный контроль).

Важную роль неинструментальная информация играет в деятельности операторов транспортных средств. Так, летчик, ощущая угловые и продольные ускорения, вибрации, шумы, усилия на органах управ­ления и даже запахи, систематически обозревая внекабинное пространство при визуальном полете, может косвенно судить о состоянии самолета, изменении ре­жима полета.

Неинструментальная информация совместно с приборной информацией является важной составной частью информационной модели. В связи с этим воз­никает важная инженерно-психологическая проблема взаимодействия двух видов информации: инструмен­тальной и неинструментальной. От особенностей их взаимодействия зависит надежность восприятия ин­формации человеком и, следовательно, надежность его деятельности. При этом следует иметь в виду, что не­согласованность инструментальных и неинструмен­тальных сигналов оказывает отрицательное влияние на деятельность оператора, являясь источником возник­новения конфликтной ситуации. Конфликтность ее состоит в том, что при явной своей значимости обна­руженный сигнал не может быть использован для организации действий. Поэтому считается, что неин­струментальная информация также может и должна подвергаться упорядочению и в этом отношении она принципиально не отличается от инструментальной [112].

И, наконец, в зависимости от изменения во време­ни различают статическую и динамическую информа­цию [30]. Статическая (постоянная, не меняющаяся во времени) информация, как правило, не подвергается машинной обработке. К ней относятся, например, па­раллели и меридианы на географических картах, фи­зические и математические константы, статические надписи на рабочих местах операторов и т. п. Динами­ческая (меняющаяся во времени) информация обычно подлежит машинной обработке, при необходимости подлежит кодированию и в закодированном виде по­ступает к оператору. Сказанное относится преиму­щественно к инструментальной информации.

Информацию, используемую в СЧМ, можно рас­сматривать в различных аспектах: количественном, семантическом, прагматическом. Количественный ас­пект, называемый также статистическим, структурным, отражает объективные пространственно-временные характеристики сигналов. Он проявляется в различной вероятности появления того или иного сигнала, в ко­личестве возможных сигналов, в соотношении сигнала и шума (помехи) и др. Психологическими эквивален­тами этих переменных являются степень неожиданно­сти сигнала или степень сложности выбора [128]. Дан­ный аспект информации оценивается ее количеством, которое зависит только от объективных характеристик сигналов (их вероятностей и разнообразия), и совер­шенно не учитывает их субъективные, психологичес­кие эквиваленты.

Прагматический аспект информации определяет отношение получателя к принятым сообщениям, како­во их практическое, прикладное значение в деятельно­сти оператора, насколько они полезны и как отража­ются на деятельности оператора и ее результатах. Данный аспект информации оценивается ее ценнос­тью, полезностью для оператора. Ценность информа­ции может оцениваться только в связи с целью де­ятельности. В этой связи любое сообщение может содержать (или не содержать) информацию, облегча­ющую или затрудняющую достижение полезного ре­зультата (цели) в вероятностной ситуации. Поэтому основные подходы к определению ценности информа­ции предполагают оценку изменения вероятности до­стижения цели после получения данного сообщения.

Семантический аспект определяется содержани­ем, смыслом информации, который она несет опера­тору. Этот аспект разработан наиболее слабо, что обусловлено как трудностью количественной оценки смысловой стороны информации, так и недостаточной определенностью самого этого понятия [155]. Один из наиболее возможных подходов к определению количе­ства семантической информации предложен К.С. Козловым [61,70]. Этот подход основан на том, что необхо­димым моментом применения семантической теории информации является определение исходного множе­ства «обслуживаемых» элементов и функциональных элементов системы, выявление многоуровневой струк­туры этого множества элементов, знание алгоритмов функционирования системы. Семантическая информа­ция делится на два вида: структурную и функциональ­ную. Первая основывается на статических множествах, элементы которых не изменяют свои состояния во времени. Этот вид информации используется челове­ком для ориентировочной деятельности. Вторая состав­ляющая семантической информации (функциональная) базируется на динамических множествах и представ­ляет собой информацию о состояниях элементов мно­жества и о действиях, с помощью которых осуществля­ется требуемое движение множества как динамической системы. Этот вид информации используется челове­ком для исполнительной деятельности. На основе та­кого теоретико-множественного подхода получены формулы для количественного определения семанти­ческой информации [61,70].

Используемая оператором информация оказывает на него и определенное эмоциональное влияние. Наи­более полно этот вопрос проработан в информацион­ной теории эмоций [165]. Согласно этой теории сте­пень эмоционального напряжения Э количественно зависит от степени потребности (влечения, мотивации) П, а также от разности между информацией, прогностично необходимой для удовлетворения потребности (In) и информацией, реально имеющейся у человека (Iр). Указанные отношения выражаются формулой

(2.1)

Количество информации тесно связано и опреде­ляется вероятностью достижения цели. Ее оценку че­ловек производит на основе врожденного и ранее приобретенного опыта, непроизвольно сопоставляя ин­формацию о средствах, времени, ресурсах, предполо­жительно необходимых для удовлетворения потребно­сти, с информацией, поступившей в данный момент. Прогнозирование вероятности достижения цели может осуществляться как на осознаваемом, так и неосознанном уровне. Возрастание вероятности в результате поступления новой информации (Iр>In) порождает положительные эмоции, падение этой вероятности (Ip< In) ведет к отрицательным эмоциям. Причем вели­чина этих эмоций в обоих случаях прямо пропорцио­нальна потребностям человека. Стремление максими­зировать положительные эмоции и минимизировать отрицательные определяет регуляторные функции эмоций, их роль в организации целенаправленного поведения. Информационная теория эмоций позволя­ет использовать объективно регистрируемые прояв­ления эмоций (мимика, голос, изменение физиологи­ческих функций и электрической активности мозга, сердца) в качестве индикатора потребностей человека и степени их удовлетворенности, уточнить их класси­фикацию, проследить процесс их формирования и вза­имодействия. Информационная теория эмоций позво­лила предложить методы объективной диагностики эмоционального напряжения в различных видах опе­раторской деятельности и меры профилактики этого напряжения.

Еще один подход к оценке эмоциональных реак­ций оператора на используемую информацию предло­жен в работе [77]. Здесь отмечается, что значимая для оператора (прагматическая) информация может иметь для него два значения. Первое из них связано с цен­ностью информации, второе — с реакциями, свиде­тельствующими о предстоящих трудностях, опасностях. Такая информация названа значимо тревожной; ее количественная оценка дается на основании времен­ных и точностных ограничений, возникающих в дея­тельности оператора.

Рассмотренные явления тесно связаны с поняти­ем фасцинации. Фасцинация (от лат. fascia — повязка, полоса) представляет зависимость результата воздей­ствия информации на поведение от посторонних фак­торов, в частности, помех. Они могут возникать как в канале связи, так и в самом мозгу. В последнем случае помехи могут генерироваться специальными мозговы­ми механизмами, играющими роль фильтров, которые разрушают информацию на ее пути к эффекторному (исполнительному) аппарату человека. На существование подобных механизмов впервые указал И. Винер; он предложил назвать семантически значимой ту ин­формацию, которая, пройдя систему фильтров, непос­редственно влияет на эффекторный аппарат принима­ющей системы (например, на поведение человека). Ю.В. Кнорозов высказывает предположение, что сиг­налы помимо информации могут также нести и фасцинации, т. е. такое воздействие на фильтры принимае­мой системы, которое снижает их эффективность и повышает количество семантически значимой инфор­мации. Примером фасцинативного воздействия на центральную нервную систему может являться особый ритм речевых сигналов и их своеобразная интонаци­онная окраска при гипнозе.

2.2. Основные свойства и характеристики информации

Для того чтобы иметь возможность использовать понятие информации при решении различных инже­нерно-психологических задач, нужно знать основные характеристики и свойства информации. Основными ее характеристиками являются количество, ценность, избыточность и достоверность. Количество информа­ции является важнейшей характеристикой информа­ции, используемой в инженерной психологии. Простой формальный аппарат для оценки количества информа­ции, содержащейся в сообщении, разработан в клас­сической теории информации (статистической теории связи).

При таком подходе количество информации опре­деляется величиной уменьшения энтропии (неопреде­ленности ситуации) после получения человеком каких-либо сведений. Величина энтропии рассчитывается по формуле

(2.2)

где Рi — вероятность i-того сигнала (нахождения сис­темы в i-том состоянии);

n — общее число различных сигналов (состояний системы).

В случае, есливсе сигналы равновероятны (Рi = ),

то энтропия при данном n достигает своего максималь­ного значения, равного

H = log2 n, (2.3)

При поступлении сообщения о каком-либо собы­тии энтропия системы уменьшается, причем это умень­шение и характеризует количество поступившей ин­формации

I = Н – H0, (2.4)

где Н и Н0 — соответственно априорная (доопытная) и апостериорная (послеопытная, т. е. после получения сообщения) энтропия.

В том практически важном случае, когда после по­ступления сведений состояние системы стало полнос­тью определенным (а именно такой случай наиболее характерен для деятельности оператора), то количество информации численно равно априорной энтропии си­стемы, т. е. I = Н.

В формулах (2.2) и (2.3) логарифм может браться по любому основанию, но наиболее часто использу­ется основание, равное двум. При этом единица из­мерения количества информации носит название двоичной единицы информации (деи), или бита. Ин­формация в один бит будет иметь место в том случае, когда осуществляется выбор одного из двух равнове­роятных событий. Передача информации, равной од­ному биту позволяет уменьшить неопределенность ситуации вдвое.