Рекомендуемые усилия на органы управления

Для некоторых видов деятельности иногда отсут­ствует возможность осуществлять зрительный конт­роль в процессе двигательного акта. В этом случае большое значение имеют точностные характеристики движений оператора, т. е. возможностей человека по различению (без участия зрительного контроля) на­правления, размаха, длительности и силы движения. Эти характеристики особенно необходимо учитывать при организации дозированных движений.

Наиболее точные ощущения характерны для дви­жений, совершаемых на расстоянии 15 — 35 см от сред­ней точки тела. Уже на расстоянии 40 — 50 см точность анализа существенно снижается. Точность попадания рукой в нужное место на пульте управления составля­ет ±15 мсм в средней зоне ниже груди и ±30 мсм в крайних зонах. Точностные характеристики движений определяют также вероятность ошибочных реакций оператора [192]. Этот вопрос более подробно рассмот­рен в конце данной главы.

Уменьшению утомляемости и повышению произ­водительности труда способствует соблюдение прин­ципов экономии движений и энергии, основанных на учете физиологических и биомеханических особенно­стей двигательного аппарата (рис. 14.2).

Рис. 14.2. Принципы экономии движений и усилий.

К принципам экономии движений относят следу­ющие:

• принцип непрерывности, в соответствии с которым каж­дое последующее движение должно быть естественным продолжением предыдущего;

• принцип параллельности, заключающийся в обеспечении одновременности движений обеих рук, а также рук и ног работающего;

• принцип благоприятных траекторий, предусматриваю­щий возможность симметричных, плавных, круговых, не­прерывных движений вместо несимметричных, зигзаго­образных, прямолинейных;

• принцип оптимальной интенсивности, обеспечивающий высокую производительность труда при оптимальных значениях физического и нервного напряжений;

• принцип ритмичности, заключающийся в регулярной по­вторяемости движений через определенные (равные) про­межутки времени (наиболее благоприятным является ес­тественный ритм);

• принцип привычности движений, обеспечивающий авто­матическое их выполнение, что достигается тренировкой, в результате которой вырабатываются динамические сте­реотипы действий.

Заканчивая рассмотрение характеристик управля­ющих движений, необходимо хотя бы кратко сказать об особенностях формирования двигательных навыков. В процессе их формирования изменяются взаимоотно­шения между видами движений. На первой ступени обычно преобладают гностические движения. Позднее они редуцируются и настолько тесно сливаются с ра­бочими движениями, что их трудно бывает разделить. В результате движения становятся более плавными и стабильными. На начальных ступенях образование двигательного навыка происходит под контролем зре­ния; впоследствии же этот контроль все более перехо­дит к чувствительным приборам двигательного аппара­та — к тактильному и кинестетическому анализаторам. При этом образуется внутренний контур регулирова­ния, определяемый действием этих анализаторов, в котором сигналы проходят значительно быстрее (0,4 с), чем по внешнему контуру регулирования, включающе­му зрительный контроль (1 — 2 с). Это важное свойство может быть использовано также для повышения каче­ства управления путем подачи сигналов обратной связи не на зрительный, а непосредственно на тактильный анализатор. Это связано с тем, что знание оператором результатов своих действий (самоконтроль своей ра­боты) является важным средством повышения эффек­тивности труда.

Помимо мануальных действий, как уже отмечалось, в ряде случаев для управления машиной могут исполь­зоваться рабочие действия ногами. Обычно они носят вспомогательный характер, однако иногда эти действия оказываются весьма важными (например, управление самолетом, станком, автомобилем и т. п.).

Скорость и точность движений, выполняемых сто­пой, могут соперничать с некоторыми движениями, выполняемыми руками. Так, временные параметры элементарных движений рукой, встречающихся в опе­раторской деятельности (в частности, «время дотягивания») при расстояниях 150 мм ничуть не меньше, чем время выполнения этих движений стопой; Эксперимен­ты по определению точности приложения статических сил к средствам управления самолетом (рычаги, штур­вал) показывают, что точность выполнения операций с помощью ног примерно такая же, как с помощью рук. Силовые возможности ног зачастую выше аналогич­ных возможностей рук [7].

Биомеханические характеристики нижних конеч­ностей необходимо учитывать при конструировании органов ножного управления (педалей). Основными из них являются антропометрические размеры, массоинерционные, кинематические, силовые и точностные характеристики. Довольно подробно они приведены в работе [7]. Примеры учета их при конструировании педалей приведены в главе XVII.

14.2. Психомоторика оператора

Любому управляющему действию оператора пред­шествуют те или иные психические процессы. Реализа­ция психической деятельности посредством движений, как отмечалось в главе II, носит название психомоторики. Объективно психомоторика проявляется в психомо­торных процессах. Основу их составляют идеомоторные, эмоционально-моторные и сенсомоторные процессы.

Идеомоторные процессы, или идеомоторика (от греч. idea — идея, образ и лат. motor — приводящий в движение) связывают представление о движении с его реальным осуществлением. Эти процессы имеют боль­шое значение при построении мысленных (идеальных) моделей деятельности оператора, при проведении тре­нировок, решении различного рода «вводных».

Эмоционально-моторные процессы отражают вли­яние различного рода эмоций на устойчивость двига­тельных актов. Эмоции могут при определенных усло­виях вызвать нарушения нормального протекания психомоторных процессов или эмоционально-мотор­ную напряженность. Последняя проявляется в позе, мимике, чрезмерно замедленных движениях, неадек­ватной нагрузке, усилении ряда вегетативных функ­ций. Для многих видов операторской деятельности профессионально значимым качеством является эмо­ционально-моторная устойчивость, то есть сохранение профессиональных двигательных навыков в условиях действия экстремальных факторов [128].

Сенсомоторные процессы, или сенсомоторика (от лат. sensus—чувство, ощущение) определяют взаимо­связь сенсорных и моторных (двигательных) компонен­тов психической деятельности. С помощью этих процессов осуществляется связь восприятия и движения, которая проявляется в виде сенсомоторных реакций или сенсомоторной координации.

Сенсомоторной реакцией называется одиночное (дискретное) движение оператора на появление (пре­кращение действия) того или иного раздражителя. Изучение сенсомоторных реакций имеет большое зна­чение для инженерной психологии. Это обусловлено следующими причинами. Во-первых, многие виды опе­раторской деятельности в той или иной степени пред­ставляют собой совокупность различных видов сенсомоторных реакций. Во-вторых, время реакции может использоваться как один из показателей психофизиоло­гического состояния оператора или готовности его к выполнению определенного вида деятельности. В-тре­тьих, время реакции очень часто используется как индикатор при инженерно-психологических измерени­ях и исследованиях.

Различают следующие типы сенсомоторных реак­ций: простая, сложная и реакция на движущийся объект.

Простая сенсомоторная реакция заключается в ответе заранее известным простым одиночным движе­нием на внезапно появляющийся, но заранее извест­ный сигнал. Основной показатель такой реакции — время, которое складывается из двух составляющих: латентного (скрытого) периода и времени моторного акта.

В реальных процессах работы оператора простые сенсомоторные реакции встречаются сравнительно редко. Наиболее характерными являются сложные реакции, в которых требуемое действие оператора зависит от вида и характера поступившего сигнала. Например, каждому из сигналов соответствует вклю­чение своего тумблера. При анализе сложных реакций необходимо иметь в виду, что движения в той или иной степени осуществляются под контролем зрительной системы. Многие элементы программы двигательного акта формируются еще до начала движения, по отно­шению к которому зрительная система выступает в роли задающего устройства. Таким образом, сенсорная и моторная компоненты времени реакции (ВР) имеют на оси времени общий участок (на рис.; 14,3 он обозначен штриховкой). Это означает, что в это время на­чинают работать несколько параллельных уровней регуляции [116].

Рис. 14.3. Соотношение между различными компонентами сенсомоторной реакции: ЛП — латентный период; ВД — время движения.

При изучении управляющих движений большое значение имеет анализ ошибочных реакций операто­ра. Наиболее полно и систематично этот вопрос рас­смотрен в работе [192]. Установлено, например, что число ошибок существенно зависит от вида и направ­ления движения (табл. 14.5).

Таблица 14.5