Поправки на одежду и обувь для некоторых размеров тела

Влияние маскирующих антропометрических фак­торов учитывается путем соответствующего увеличе­ния (уменьшения) той или иной антропометрической характеристики.

Порядок использования на практике рассмотрен­ных антропометрических характеристик заключается в следующем:

• определить контингент людей, для которых предназначе­но данное оборудование;

• выбрать антропометрические характеристики, которые являются основными для определения размеров оборудо­вания и необходимого рабочего пространства;

• установить, какому проценту работающих должно удовлетворять данное оборудование, и найти соответ­ствующие ему значения антропометрических характе­ристик;

• учесть соответствующиепоправки на одежду и обувь.

Подробные рекомендации по выполнению рас­смотренных правил можно найти в специальной лите­ратуре [215].

14.4. Физические качества, энергозатраты и тяжесть труда оператора

На результаты выполнения управляющих действий оператора большое влияние оказывают его физичес­кие качества. Под ними понимаются такие качества человека, которые обусловливают возможность выпол­нения им физической (мускульной) работы. К основным физическим качествам оператора относятся сила, бы­строта, выносливость, координация и точность движе­ний, ловкость и гибкость [104].

Сила человека определяется его способностью преодолевать внешнее сопротивление или противодей­ствовать ему за счет мышечных усилий. Различают следующие разновидности силы: статическая, проявля­ющаяся при напряжении неподвижных мышц; динами­ческая, проявляющаяся при движениях; амортизацион­ная, проявляющаяся при уступающих воздействию движениях; взрывная, характеризующая способность проявить силу большой величины за короткий проме­жуток времени.

Выносливость характеризует способность к дли­тельному выполнению какой-либо деятельности без заметного снижения ее эффективности. Различают динамическую и статическую выносливость (см. гла­ву X), а также общую и специальную выносливость. Общая выносливость определяется по отношению к продолжительной работе умеренной тяжести, включа­ющей функционирование большей части мышечного аппарата. Специальная выносливость представляет выносливость по отношению к определенной деятель­ности.

Координация движений есть согласованность од­новременно или последовательно выполняемых движе­ний. Точность движений определяется степенью соот­ветствия движений двигательной задаче. Различают три вида точности: по силе, пространственную и времен­ную. Под гибкостью понимается способность выпол­нять движения с большой амплитудой.

Комплексным качеством двигательных способно­стей человека является ловкость. Она измеряется сле­дующими показателями: координационной сложностью задания, точностью и временем ее выполнения, коли­чеством функциональных двигательных единиц, вов­леченных в движение. Значение ловкости особенно велико при выполнении сложных непрерывных дви­жений, оно существенно меньше при выполнении дискретных действий.

Управляющие действия определяют физический компонент деятельности оператора. В соответствии с основными положениями физиологии труда физичес­кую работу можно разделить на два вида [44, 75]:

• динамическую мышечную работу, при которой мышцы различных групп попеременно растягиваются и сокраща­ются, т. е. ритмично напрягаются и расслабляются;

• статическую мышечную работу, при которой мышцы не движутся (например, когда человек держит груз на вытя­нутой руке или работает согнувшись, на корточках).

При статической работе напряжение в среднем в 5 раз превышает напряжение, вызываемое дина­мической работой. При статической работе требует­ся в 3 — 4 раза больше времени на восстановление зат­раченной энергии, чем при динамической работе. Статическая нагрузка, возникающая при манипулиро­вании органами управления, не должна превышать 15% максимального усилия соответствующей ко­нечности (руки или ноги) при данной рабочей позе оператора.

Физическая нагрузка во многом определяет энер­готраты оператора (хотя следует сразу оговориться, что только ею не ограничиваются энергетические затраты организма). Поэтому в целом ряде случаев энергетический подход нередко используют для из­мерения тяжести работы. При этом тяжесть работы оценивают или по величине грузопереработки или по количеству расходуемой человеком энергии (калори­метрический метод).

Первый способ основан на предположении, что между величиной мышечных усилий, требующих оп­ределенного количества энергии, и степенью утомле­ния работающего существует пропорциональная зави­симость. Поэтому в ряде случаев для классификации работ по тяжести пытаются использовать законы ме­ханики. За меру тяжести при этом принимается рабо­та, совершаемая по перемещению груза на определен­ное расстояние, выраженная в килограммометрах или килоджоулях. Такой подсчет выполняемой человеком внешней механической работы не всегда дает точные результаты, поскольку процессы, протекающие в орга­низме, очень сложны, и работа человека не может быть приравнена к работе механического устройства. По­пытки учесть некоторые психофизиологические осо­бенности человека (вес его тела, подъем и спуск с грузом или без него, повороты и наклоны корпуса тела, тягу, толкание груза и т. д.) принципиально положение дел не меняют, поскольку общий подход к определе­нию энерготрат по прежнему остается чисто механи­стическим.

Другой способ (калориметрический) основан на том, что выполняемая человеком механическая работа сопровождается расходованием тепловой энергии, источником которой является потребляемая пища. Та­кой подход вытекает на основании рассмотрения ус­ловной модели энергетики организма. [3].

Энергетику организма условно можно предста­вить в виде системы биохимических аккумуляторов энергии, получающих ее из общего энергетического резерва организма и питающих органы — потреби­тели (рис. 14.7). Каждый аккумулятор обладает определенной энергоемкостью, поэтому утомление лю­бого органа (мускулатуры руки или всего тела, орга­нов чувств, мозга и центральной нервной системы и т. д.) можно представить как израсходование энер­гии в аккумуляторе, питающем этот орган. Время же отдыха можно представить как время зарядки акку­мулятора.

 

Рис. 14.7. Условная модель энергетики организма.

С учетом сказанного, как следует из рис. 14.7, об­щие энерготраты организма можно представить как сумму двух составляющих

где Аакт — энерготраты на активную деятельность (не­рвно-мозговую и физическую), Асо — энерготраты на самообслуживание организма.

Из сказанного видно, что энерготраты на выпол­нение мышечной работы составляют лишь часть общих энерготрат. Поэтому оценка тяжести труда лишь пу­тем оценки величины внешней механической работы, выполняемой человеком, является очень упрощенной и неточной. Такая оценка нужна лишь для установле­ния нижней и верхней границ физической нагрузки человека: известно, что как чрезмерно низкая физичес­кая нагрузка (гиподинамия), так и чрезмерно высокая отрицательно сказываются на физическом состоянии и работоспособности человека.

Более точную оценку энерготрат организма дает применение калориметрического метода. Различают методы прямой и непрямой калориметрии. В первом случае оценка ведется по количеству выделенного че­ловеком тепла, которое можно измерить с помощью специальных калориметров, представляющих собой теплоизолированные помещения (калориметрические камеры), улавливающие отдаваемое организмом теп­ло. Точность такого метода весьма высока, однако его применение возможно только в лабораторных условиях.

Поэтому на практике используют методы непря­мой калориметрии. Они основаны на анализе выдыха­емого воздуха с последующим расчетом дыхательного коэффициента (отношение объема выделившегося уг­лекислого газа к объему поглощенного кислорода). Для сбора выдыхаемого воздуха используется мешок Дуг­ласа, а для определения энерготрат — газовый счет­чик и газоанализатор выдыхаемого воздуха. Анализ проводится с учетом температуры воздуха и баромет­рического давления.

Энергетический расход для мужчин при условии, что в работе участвуют большая часть мышц приведен в табл. 14.10 [207]. Для женщин эти величины следует брать примерно на 20% ниже. Как следует из табл. 14.10 верхняя граница физической мощности составляет 8300 кДж израсходованной рабочей энергии за смену. Средний энергетический расход за смену у мужчин при шестидневной рабочей неделе не должен превы­шать 6650 кДж (у женщин — 4150 кДж). Чистый энер­гетический расход за неделю у мужчин не должен превышать 33000 кДж в оптимальных микроклимати­ческих условиях. Максимальный энергетический расход за сутки, включая основной обмен и расход энергии в нерабочее время, не должен превышать 20000 кДж.

В зависимости от величины энергетического рас­хода различают несколько категорий тяжести работ (табл. 14.10). Среднетяжелую работу, когда энергети­ческий расход за смену составляет 6250 кДж (или 33 кДж в минуту), здоровый человек может выполнять в течение долгого времени. Очень тяжелую работу, когда энергетический расход за смену составляет 10500 кДж (или 46 кДж в минуту), может выполнять лишь здоровый человек в возрасте от 20 до 30 лет в течение короткого времени.

Таблица 14.10