Удары твердых тел с образованием искр

При определенной силе удара некоторых твердых тел друг о друга могут образовываться искры, которые называют искрами удара или трения. Искры представляют собой нагретые до высокой температуры (раскаленные) частицы металла или камня (в зависимости от того, какие твердые тела участвуют в соударении) размером от 0,1 до 0,5 мм и более.

Воспламеняющая способность искры, находящейся в покое, выше летящей, так как неподвижная искра медленнее охлаждается, она отдает тепло одному и тому же объему горючей среды и, следовательно, может его нагреть до более высокой температуры. Поэтому искры, находящиеся в покое, способны воспламенить даже твердые вещества в измельченном виде (волокна, пыли).

Искры в условиях производства образуются при работе с инструментом ударного действия (гаечными ключами, молотками, зубилами и т. п.), при попадании примесей металла и камней в машины с вращающимися механизмами (аппараты с мешалками, вентиляторы, газодувки и т. п.), а также при ударах подвижных механизмов машины о неподвижные (молотковые мельницы, вентиляторы, аппараты с откидными крышками, люками и т. п.).

Количество тепла, отдаваемое искрой при охлаждении от начальной температуры t до температуры самовоспламенения tсв горючей среды, в которую она попала, вычисляется по формуле:

(42)

где Vu – объем искры металла, м3, определяется как

rи – плотность металла, кг/м3;

си – теплоемкость расплава металла, Дж/(кг·К) ;

k – коэффициент, равный отношению тепла, отданного горючему веществу к энергии, запасенной искрой.

 

Для предупреждения опасного проявления искр удара и трения применяют искробезопасный инструмент, изготовленный из бронзы, фосфористой бронзы, латуни, бериллия, дюралей с содержанием магния не более 1,2—1,8 %; обдув чистым воздухом места производства ремонтных и других работ, связанных с использованием искроопасного инструмента, при существовании возможности образования горючих смесей.

Поверхностное трение тел

Перемещение относительно друг друга соприкасающихся тел требует затраты энергии на преодоление сил трения. Эта энергия почти целиком превращается в теплоту, которая, в свою очередь, зависит от вида трения, свойств трущихся поверхностей (их природы, степени загрязнения, шероховатости), от давления, размера поверхности и начальной температуры. При нормальных условиях выделяющееся тепло своевременно отводится, и этим обеспечивается нормальный температурный режим. Однако при определенных условиях температура трущихся поверхностей может повыситься до опасных значений, при которых они могут стать источником зажигания.

Причинами роста температуры трущихся тел в общем случае является увеличение количества тепла или уменьшение теплоотвода. По этим причинам в технологических процессах производств происходят опасные перегревы; подшипников, транспортных лент и приводных ремней, волокнистых горючих материалов при наматывании их на вращающиеся валы, а также твердых горючих материалов при их механической обработке.

Все эти факторы должны учитываться коэффициентом трения. Так как почти вся энергия, затрачиваемая на преодоление работы сил трения, переходит в теплоту (лишь незначительная часть ее расходуется на износ поверхностей и колебательные движения), то можно определить количество тепла QTP:

, (43)

где f – коэффициент трения;

N – нагрузка, Н;

d – диаметр шейки вала, м;

n – частота вращения вала, с-1;

 

При нормальном состоянии и правильной эксплуатации трущихся пар выделяющееся тепло своевременно отводится специальной системой охлаждения Qохл и в окружающую среду Qпот, обеспечивая поддержание температуры на заданном уровне, т. е., если

Нарушение этого равенства, т. е. увеличение количества выделяю-щегося тепла или уменьшение теплопотерь, приведет к повышению температуры трущихся тел. По этой причине происходят загорания в подшипниках машин и аппаратов, перегревы сильно затянутых сальников, перегревы и воспламенения транспортерных лент и приводных ремней, загорания волокнистых материалов при наматывании их на вращающиеся валы, перегревы при механической обработке твердых горючих материалов.

Большую опасность перегрева представляют подшипники скольжения (в сравнении с подшипниками качения) сильно нагруженных и высокооборотных валов машин и аппаратов.

Увеличение тепловыделения возможно при нарушении смазки, чрезмерной затяжке подшипников, перекосах и перегрузках валов. Уменьшение теплоотвода от подшипников возможно при загрязнении их поверхности отложениями пыли и волокон, обращающихся в технологическом процессе веществ и нарушении режима работы системы охлаждения.

Перегрев транспортных лент и приводных ремней связан с длительным проскальзыванием (пробуксовкой) шкива относительно ремня или ленты из-за слабого их натяжения или перегрузки. В результате этого лента и ремень могут сильно перегреваться.

Перегрев волокнистых материалов при наматывании их на вращающиеся валы происходит в результате постепенного уплотнения массы горючего материала и усиливающегося трения его о неподвижные части корпуса аппарата (машины). Этот процесс может привести к перегреву наматывающегося волокнистого материала.

Опасность пожаров и загораний по этой причине существует на хлопко- и льноперерабатывающих заводах, ткацких фабриках, зерноуборочных комбайнах и т. п.

Перегрев твердых горючих материалов при их механической обработке путем резания, фрезерования, строгания, шлифовки и т. п. связан с преодолением сил трения. Количество выделяющегося при этом тепла зависит от скорости резания и толщины стружки. На интенсивность тепловыделения также оказывает влияние острота и правильность заточки режущего инструмента (резца). Опасность воспламенения при механической обработке представляют такие материалы, как целлулоид, термореактивные пластмассы, резина, некоторые активные металлы (например, магний, титан и их сплавы) и т. п. Для предупреждения воспламенения твердых материалов при их механической обработке для каждого горючего материала устанавливают оптимальную (безопасную) скорость резания в зависимости от установленной толщины стружки на данном станке; своевременно и правильно затачивают режущий инструмент (резец); устраивают системы локального охлаждения места резания с использованием в качестве охлаждающей среды воды, масла, различных эмульсий, газов и т. п.

Сжатие (компримирование) газов в компрессорах является распространенной операцией на производстве. Например, его широко применяют в технологических процессах транспортировки газов, при производстве этилового спирта из этилена, где Рраб = 10 МПа (100 ат), полиэтилена методом высокого давления, где Рраб = 150 – 200 МПа (1500 – 2000 ат), при получении сжатого воздуха и т. п.

Сущность нагревания газов при сжатии в компрессорах заключается в том, что в результате изменения (уменьшения) первоначального объема газообразных тел затрачивается механическая энергия на преодоление межмолекулярных сил трения (на нарушение динамического равновесия между силами гравитационного и электромагнитного полей). Вследствие этого выделяется тепло, которое расходуется на нагревание сжимаемого газа и самого компрессора.

Практика эксплуатации компрессоров показала, что при неисправностях и нарушении нормального режима работы могут возникать вспышки, пожары и взрывы не только при сжатии горючих газов, но и при сжатии воздуха.

Повышение температуры газа при адиабатическом сжатии равно:


(44)

где Т1 и Т2 - температура газа до и после сжатия, К.

Основными причинами перегрева газов и компрессоров являются:

– нарушение материального баланса (уменьшение расхода газа в системе или увеличение подачи компрессора);

– снижение интенсивности отвода тепла из зоны сжатия (уменьшение расхода или полное прекращение подачи хладоагента в холодильники, подача хладоагента с завышенной температурой, загрязнение теплообменной поверхности холодильников).

Предупреждение перегрева компрессоров при сжатии газов обеспечивают разделением процесса сжатия газов на несколько ступеней, если по условиям технологии требуется 4 – 5 кратное сжатие; устройством систем охлаждения газа на каждой ступени сжатия; установкой предохранительного клапана на нагнетательной линии за компрессором; автоматическим контролем и регулированием температуры сжимаемого газа путем изменения расхода охлаждающей жидкости, подаваемой в холодильники; автоматической системой блокировки, обеспечивающей отключение компрессора в случае увеличения давления или температуры газа в нагнетательных линиях; очисткой теплообменной поверхности холодильников и внутренних поверхностей трубопроводов от нагара масляных отложений.